An algebraic version of Demailly’s asymptotic Morse inequalities
HTML articles powered by AMS MathViewer
- by Flavio Angelini
- Proc. Amer. Math. Soc. 124 (1996), 3265-3269
- DOI: https://doi.org/10.1090/S0002-9939-96-03829-4
- PDF | Request permission
Abstract:
We give an elementary algebraic proof of some asymptotic estimates (called by Demailly asymptotic Morse inequalities) for the dimensions of cohomology groups of the difference of two ample line bundles on a smooth complex projective variety of any dimension.References
- Jean-Pierre Demailly, Champs magnétiques et inégalités de Morse pour la $d''$-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189–229 (French, with English summary). MR 812325, DOI 10.5802/aif.1034
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI 10.1007/BFb0094512
- J.-P. Demailly, $L^{2}$ vanishing theorems for positive line bundles and adjunction theory, CIME session on Transcendental Methods in Alg. Geom.(Cetraro, Italy, July 1994), Prépublication de l’Inst. Fourier 288 (1994).
- Yum Tong Siu, An effective Matsusaka big theorem, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1387–1405 (English, with English and French summaries). MR 1275204, DOI 10.5802/aif.1378
- S. Trapani, Numerical criteria for the positivity of the difference of ample divisors, preprint (1991).
Bibliographic Information
- Flavio Angelini
- Affiliation: Département de Mathématiques, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 Nice, France
- Email: angelini@math.unice.fr
- Received by editor(s): March 6, 1995
- Communicated by: Eric M. Friedlander
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3265-3269
- MSC (1991): Primary 14F99; Secondary 32J99
- DOI: https://doi.org/10.1090/S0002-9939-96-03829-4
- MathSciNet review: 1389502