Gaps in $(\mathcal {P}(\omega ),\subset ^*)$ and $(\omega ^{\omega },\le ^*)$
HTML articles powered by AMS MathViewer
- by Zoran Spasojević
- Proc. Amer. Math. Soc. 124 (1996), 3857-3865
- DOI: https://doi.org/10.1090/S0002-9939-96-03378-3
- PDF | Request permission
Abstract:
For a partial order $(P,\le _P)$, let $\Gamma (P,\le _P)$ denote the statement that for every $\le _P$-increasing $\omega _1$-sequence $a\subseteq P$ there is a $\le _P$-decreasing $\omega _1$-sequence $b\subseteq P$ on top of $a$ such that $(a,b)$ is an $(\omega _1,\omega _1)$-gap in $P$. The main result of this paper is that $\mathfrak t>\omega _1\leftrightarrow \Gamma (\mathcal P(\omega ),\subset ^*)\leftrightarrow \Gamma (\omega ^\omega ,\le ^*)$. It is also shown, as a corollary, that $\Gamma (\omega ^\omega ,\le ^*)\to \mathfrak b>\omega _1$ but $\mathfrak b>\omega _1\not \to \Gamma (\omega ^\omega ,\le ^*)$.References
- Murray G. Bell, On the combinatorial principle $P({\mathfrak {c}})$, Fund. Math. 114 (1981), no. 2, 149–157. MR 643555, DOI 10.4064/fm-114-2-149-157
- H. G. Dales and W. H. Woodin, An introduction to independence for analysts, London Mathematical Society Lecture Note Series, vol. 115, Cambridge University Press, Cambridge, 1987. MR 942216, DOI 10.1017/CBO9780511662256
- F. Hausdorff, Die Graduierung nach dem Endverlauf, Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse 31 (1909), 296–334.
- F. Hausdorff, Summen von $\aleph _1$ Mengen, Fund. Math. 26 (1936), 241–255.
- K. Kunen, Set Theory, An introduction to independence proofs, North-Holland, Amsterdam, 1980.
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Marion Scheepers, Gaps in $\omega ^\omega$, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 439–561. MR 1234288
- R. C. Solomon, Families of sets and functions, Czechoslovak Math. J. 27(102) (1977), no. 4, 556–559. MR 457218, DOI 10.21136/CMJ.1977.101493
- Zoran Spasojević, Some results on gaps, Topology Appl. 56 (1994), no. 2, 129–139. MR 1266138, DOI 10.1016/0166-8641(94)90014-0
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
Bibliographic Information
- Zoran Spasojević
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Address at time of publication: Institute of Mathematics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- Email: zoran@math.huji.ac.il
- Received by editor(s): September 6, 1994
- Received by editor(s) in revised form: March 27, 1995
- Communicated by: Andreas R. Blass
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3857-3865
- MSC (1991): Primary 03E05
- DOI: https://doi.org/10.1090/S0002-9939-96-03378-3
- MathSciNet review: 1327045