Danes’ Drop Theorem in locally convex spaces
HTML articles powered by AMS MathViewer
- by Cheng Lixin, Zhou Yunchi and Zhang Fong
- Proc. Amer. Math. Soc. 124 (1996), 3699-3702
- DOI: https://doi.org/10.1090/S0002-9939-96-03404-1
- PDF | Request permission
Abstract:
Danes’ Drop Theorem is generalized to locally convex spaces.References
- Josef Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369–375 (English, with Italian summary). MR 0317130
- J. Daneš, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 443–454. MR 817819
- S. Rolewicz, On drop property, Studia Math. 85 (1986), no. 1, 27–35 (1987). MR 879413, DOI 10.4064/sm-85-1-17-35
- J. R. Giles and Denka N. Kutzarova, Characterisation of drop and weak drop properties for closed bounded convex sets, Bull. Austral. Math. Soc. 43 (1991), no. 3, 377–385. MR 1107391, DOI 10.1017/S000497270002921X
- H. Brézis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), no. 3, 355–364. MR 425688, DOI 10.1016/S0001-8708(76)80004-7
- Felix E. Browder, Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds, J. Functional Analysis 8 (1971), 250–274. MR 0288638, DOI 10.1016/0022-1236(71)90012-7
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- S. Dolecki and J. P. Penot, The Clark’s tangent cone and limits of tangent cones, Publ. Math. Pau (1983), II-1-11.
- M. Turcini, Mapping theorems via variable drops in Banach spaces, Rend. Istit. Lombardo, Sci. A 114 (1980), 164–168.
- J. R. Giles, Brailey Sims, and A. C. Yorke, On the drop and weak drop properties for a Banach space, Bull. Austral. Math. Soc. 41 (1990), no. 3, 503–507. MR 1071052, DOI 10.1017/S0004972700018384
- Denka N. Kutzarova, On drop property of convex sets in Banach spaces, Constructive Theory of Functions’ 87, Sofia (1988), 283–287.
- D. N. Kutzarova and S. Rolewicz, On nearly uniformly convex sets, Arch. Math. (Basel) 57 (1991), no. 4, 385–394. MR 1124502, DOI 10.1007/BF01198964
- Robert R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR 984602, DOI 10.1007/BFb0089089
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- P. Georgiev, D. Kutzarova and A. Maaden, On the smooth drop property, Nonlinear Anal. 26 (1996), 595–602.
Bibliographic Information
- Cheng Lixin
- Affiliation: Department of Mathematics, Jianghan Petroleum Institute, Hubei 434102, People’s Republic of China
- Address at time of publication: Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
- Zhou Yunchi
- Affiliation: Department of Mathematics, Jianghan Petroleum Institute, Hubei 434102, People’s Republic of China
- Zhang Fong
- Affiliation: Department of Mathematics, Jianghan Petroleum Institute, Hubei 434102, People’s Republic of China
- Received by editor(s): December 12, 1994
- Received by editor(s) in revised form: April 5, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3699-3702
- MSC (1991): Primary 46A22
- DOI: https://doi.org/10.1090/S0002-9939-96-03404-1
- MathSciNet review: 1328359