Abstract. If \(R \) is a subring of a Krull ring \(S \) such that \(R_P \) is a valuation ring for every finite index \(Q = P \cap R, P \) in \(\text{Spec}^1(S) \), we construct polynomials that map \(R \) into the maximal possible (for a monic polynomial of fixed degree) power of \(PS_P \), for all \(P \) in \(\text{Spec}^1(S) \) simultaneously. This gives a direct sum decomposition of \(\text{Int}(R, S) \), the \(S \)-module of polynomials with coefficients in the quotient field of \(S \) that map \(R \) into \(S \), and a criterion when \(\text{Int}(R, S) \) has a regular basis (one consisting of 1 polynomial of each non-negative degree).

Introduction

If \(A \) is an infinite subset of a domain \(S \), we write \(\text{Int}(A, S) \) for the \(S \)-module of polynomials with coefficients in the quotient field of \(S \) that – when acting as a function by substitution of the variable – map \(A \) into \(S \). For \(\text{Int}(S, S) \), the ring of integer-valued polynomials on \(S \), we write \(\text{Int}(S) \). Beyond the fact (known of old) that the binomial polynomials \(\binom{n}{i} = \frac{(x-1)\cdots(x-i+1)}{i!} \) form a basis of the free \(\mathbb{Z} \)-module \(\text{Int}(\mathbb{Z}) \), the study of \(\text{Int}(S) \) originated with Pólya [16] and Ostrowski [15], who let \(S \) be the ring of integers in a number field (their results have been generalized to Dedekind rings by Cahen [4]). \(\text{Int}(R, S) \) for \(R \neq S \) has only begun to attract attention more recently [2], [3], [6], [8], [11], [13].

We will treat Pólya’s and Ostrowski’s questions in the case where \(R \neq S \) and \(S \) is a Krull ring; in particular the question when \(\text{Int}(R, S) \) is a free \(S \)-module that admits a regular basis, and the related one of determining the highest power of \(PS_P \), where \(P \) is a height 1 prime ideal of \(S \), that a monic polynomial of fixed degree can map \(R \) into. Following Pólya, we call a sequence of polynomials \((g_n)_{n \in \mathbb{N}_0} \) regular, if \(\deg g_n = n \) for all \(n \). One basic connection between a module of polynomials and the modules of leading coefficients should be kept in mind:

0.1 **Lemma.** Let \(R \) be a unitary subring of a field \(K \), \(M \) an \(R \)-submodule of \(K[x] \), and \(I_n = \{ \text{leading coefficients of } n\text{-th degree polynomials in } M \} \cup \{0\} \).

(i) If \((g_n)_{n \in \mathbb{N}_0} \) is a regular sequence of monic polynomials in \(K[x] \) such that \(I_n g_n \subseteq M \) for all \(n \), then \(M = \sum_{n=0}^{\infty} I_n g_n \) (direct sum).

(ii) A regular set of polynomials in \(M \) is an \(R \)-basis if and only if the leading coefficient of the \(n \)-th degree polynomial generates \(I_n \) as an \(R \)-module.

(iii) \(M \) has a regular \(R \)-basis if and only if each \(I_n \) is non-zero and cyclic.
1. Polynomials mapping a set into a discrete valuation ring

Throughout section one, \(v \) is a discrete valuation on a field \(K \) with value-group \(\Gamma_v = \mathbb{Z} \) and \(v(0) = \infty \), and \(R_v \) its valuation ring with maximal ideal \(M_v \). In a kind of generic local regular basis theorem, we will establish the connection (well-known in special cases) between \(\text{Int}(A, R_v) \) and the maximal power of \(M_v \) that a monic polynomial of degree \(n \) can map \(A \) into, for all \(A \subseteq K \) for which this maximum exists for every \(n \). A subset \(A \) of the quotient field of a domain \(R \) is called \(R \)-fractional if there exists a \(d \in R \setminus \{ 0 \} \) such that \(dA \subseteq R \).

1.0 Lemma. If \(R \) is an integrally closed domain with quotient field \(L, A \subseteq L \) and \(f \) non-constant \(\in L[x] \) then \(f(A) \) is \(R \)-fractional if and only if \(A \) is.

Proof. Let \(f \in L[x], \deg f = n > 0 \). If \(f(A) \) is \(R \)-fractional there is a non-zero \(d \in R \), with \(df(a) \in R \) for every \(a \in A \). Let \(c \in R \setminus \{ 0 \} \), such that \(cf \in R[x] \), and set \(g = cf = c_n x^n + \ldots + c_0 \). For every \(a \in A, g(a) \in R \) implies that \(c_n a \) is integral over \(R \), therefore \(c_n \in R \) and \(c_n A \subseteq R \). The converse is clear. \(\square \)

Since a set \(B \subseteq K \) is \(R_v \)-fractional if and only if \(\min_{b \in B} v(b) \) exists in \(\mathbb{Z} \cup \{ \infty \} \), Lemma 1.0 shows that \(A \) being \(R_v \)-fractional is necessary and sufficient for \(\min_{a \in A} v(f(a)) \) to exist in \(\mathbb{Z} \cup \{ \infty \} \) for any non-constant \(f \in K[x] \). To exclude polynomials identically zero on \(A \), for which \(\min_{a \in A} v(f(a)) = \infty \), we need \(\deg f < |A| \), so that the conditions on \(A \) in Lemma 1.1 below are necessary.

1.1 Lemma. Let \(n \in \mathbb{N}_0 \). If \(A \) is an \(R_v \)-fractional subset of \(K \) with \(|A| > n \), then \(\max\{ \min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n \} \) exists.

Proof. The case \(n = 0 \) is trivial; so let \(n > 0 \) and \(m \in \mathbb{N} \) such that \(A \) is not contained in any union of \(n \) cosets of \(M_v^m \) in \(K \). Such an \(m \) exists, since \(n < |A| \) and by the Krull Intersection Theorem \(\bigcap_{m \in \mathbb{N}} M_v^m = \{ 0 \} \). We show that for every monic \(f \in K[x] \) of degree \(n \) there exists an \(a_0 \in A \) with \(v(f(a_0)) < nm \) (and consequently \(\max\{ \min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n \} < nm \).

Let \(v' \) be an extension of \(v \) to the splitting field of \(f \) over \(K, R_{v'} \) its valuation-ring with maximal ideal \(M_{v'} \), and \(e = [\Gamma_{v'} : \Gamma_v] \). \(A \) is not contained in any union of \(n \) cosets of \(M_{v'}^{me} \) in \(\Gamma_{v'} \). Pick an \(a_0 \in A \) that is not in \(u + M_{v'}^{me} \) for any root \(u \) of \(f \) in \(\Gamma_{v'}' \); then \(v(f(a_0)) = v'(f(a_0)) = \sum_{i=1}^n v'(a_0 - u_i) < nm \). \(\square \)

1.2 Theorem. Let \(A \) be an infinite, \(R_v \)-fractional subset of \(K \). For \(n \in \mathbb{N}_0 \) set \(\gamma_{v,A}(n) = \max\{ \min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n \} \).

(i) \(M_v^{-\gamma_{v,A}(n)} = \{ \text{leading coefficients of degree } n \text{ polynomials in } \text{Int}(A, R_v) \} \cup \{ 0 \} \).

(ii) A regular basis of \(\text{Int}(A, R_v) \) is given by \((c_n g_n)_{n \in \mathbb{N}_0}, \) with \(g_n \in K[x] \) monic, \(\deg g_n = n \), and \(c_n \in K \), such that \(\min_{a \in A} v(g_n(a)) = \gamma_{v,A}(n) \) and \(v(c_n) = -\gamma_{v,A}(n) \).

Proof. (i) If \((g_n)_{n \in \mathbb{N}_0} \) is as stated, then \(\sum_{n=0}^{\infty} I_n g_n \subseteq M \) and the sum is direct, since \(\deg(g_n) = n \) makes the \(g_n \) linearly independent over \(K \). An induction on \(N = \deg f \) shows that \(f \in M \) implies \(f \in \sum_{n=0}^{N} I_n g_n \). Indeed, for \(N = 0, f \in I_0 = g_0 I_0 \), and if \(N > 0 \) and \(a_N \) is \(f \)'s leading coefficient, then \(a_N \in I_N \), so \(h = f - a_N g_N \in M \) and \(h \in \sum_{n=0}^{N-1} I_n g_n \) by induction hypothesis. (ii) and (iii) are easy. \(\square \)
Proof. Let \(I_{n,v} = \{ \text{leading coefficients of degree } n \text{ polynomials in } \text{Int}(A, R_v) \} \cup \{ 0 \} \). The leading coefficient \(c_n \) of any \(n \)-th degree polynomial in \(\text{Int}(A, R_v) \) must satisfy \(v(c_n) \geq -\gamma_v(A(n)) \), so \(I_{n,v} \subseteq M_v^{-\gamma_v(A(n))} \). Now, for \(n \in \mathbb{N}_0 \), let \(g_n \) be monic of degree \(n \) in \(K[x] \) with \(\min_{a \in A} v(g_n(a)) = \gamma_v(A(n)) \) (such things exist by dint of Lemma 1.1). Then \(M_v^{-\gamma_v(A(n))} g_n \subseteq \text{Int}(A, R_v) \), so \(M_v^{-\gamma_v(A(n))} \subseteq I_{n,v} \). This shows (i) and also that \(I_{n,v} g_n \subseteq \text{Int}(A, R_v) \) for all \(n \in \mathbb{N}_0 \). (ii) follows by Lemma 0.1 and the fact that \(M_v^{-\gamma_v(A(n))} = c_n R_v \) for every \(c_n \in K \) with \(v(c_n) = -\gamma_v(A(n)) \). \(\Box \)

Before deriving a formula for \(\max \{ \min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n \} \), when \(A \) is a subring of \(R_v \), we check that the other plausible way of normalizing the polynomials would yield the same value. We also see that polynomials mapping \(A \subseteq R_v \) into the maximal possible power of \(M_v \) can be chosen to split with their roots in any set that \(M_v \)-adically approximates \(A \) (for instance in \(A \) itself, or, if \(R_v \) is the localization of a ring \(R \) at a prime ideal of finite index, in \(R \)). We need a lemma from [7] (but include the proof).

1.3 Lemma. Let \(f \in R_v[x] \), not all of whose coefficients lie in \(M_v \), split over \(K \), as \(f(x) = d(x-b_1) \cdots (x-b_m) \cdot (x-c_1) \cdots (x-c_l) \) with \(v(b_i) < 0, v(c_i) \geq 0 \), and put \(f_+(x) = (x-c_1) \cdots (x-c_l) \). Then, for all \(r \in R_v \), \(v(f(r)) = v(f_+(r)) \).

Proof. For \(r \in R_v \), \(v(r-b_i) = v(b_i) \) and so \(v(f(r)) = v(d) + \sum_{i=1}^m v(b_i) + v(f_+(r)) \); we show \(v(d) = -\sum_{i=1}^m v(b_i) \). Consider \(d^{-1} f(x) = x^n + a_{n-1} x^{n-1} + \ldots + a_0 \). Since \(f \in R_v[x] \setminus M_v[x] \), \(v(d) = -\min_{0 \leq k \leq n} v(a_k) \). But \(a_k \) is the elementary symmetric polynomial of degree \(n - k \) in the \(b_i \) and \(c_i \), so the minimal valuation is attained by \(v(a_{n-m}) = \sum_{i=1}^m v(b_i) \). \(\Box \)

1.4 Proposition. Let \(A \subseteq R_v \) and \(0 \leq n < |A| \); then \(\alpha \) and \(\gamma \) below are equal:

\[
\alpha = \max \{ \min_{a \in A} v(f(a)) \mid f \in R_v[x] \setminus M_v[x], \deg f = n \},
\]

\[
\gamma = \max \{ \min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n \}.
\]

If, furthermore, \(B \subseteq R_v \), such that \(B \) intersects every coset of \(M_v \) that \(A \) intersects, for all \(l \in \mathbb{N} \), then \(\delta \) below is equal to \(\alpha \) and \(\gamma \); and so is \(\beta \), if \(B \) is also a ring:

\[
\beta = \max \{ \min_{a \in A} v(f(a)) \mid f \in B[x] \setminus (M_v \cap B)[x], \deg f = n \},
\]

\[
\delta = \max \{ \min_{a \in A} v(f(a)) \mid f(x) = \prod_{i=1}^n (x - d_i), d_i \in B \}.
\]

Proof. Let \(B \) be a fixed subset of \(R_v \) that intersects every coset of every power of \(M_v \) that \(A \) intersects (e.g. \(B = R_v \), when only interested in \(\alpha \) and \(\gamma \)). For \(n = 0 \) all four expressions are equal to 0; now consider a fixed \(n > 0 \). Clearly \(\delta \leq \gamma \) and, if \(B \) is a ring, \(\delta \leq \beta \leq \alpha \). Also \(\gamma \leq \alpha \), because, given \(f \) monic in \(K[x] \), there exists a \(d \in R_v \) such that \(df = g \in R_v[x] \setminus M_v[x] \) and for all \(a \in A \) \(v(g(a)) = v(d) + v(f(a)) \geq v(f(a)) \), and so \(\min_{a \in A} v(g(a)) \geq \min_{a \in A} v(f(a)) \).

To show \(\alpha \leq \delta \), we fix \(f \in R_v[x] \setminus M_v[x] \) of degree \(n \) and construct a monic \(g \) that splits with roots in \(B \) such that \(v(g(a)) \geq \min_{a \in A} v(f(a)) \) for all \(a \in A \). Let \(v' \) be an extension of \(v \) to the splitting field of \(f \) over \(K \). For all \(a \in A \), \(v'(f(a)) = v'(f_+(a)) \) with \(f_+(x) = \prod_{i=1}^l (x - c_i) \), where the \(c_i \) are the roots of \(f \) in \(R_v' \), by Lemma 1.3. Put \(s = \min_{a \in A} v'(f_+(a)) \). We replace each \(c_i \) by \(d_i \in B \) chosen such that \(\prod_{i=1}^l (x - d_i) = h(x) \) satisfies \(v'(h(a)) \geq s \) for all \(a \in A \). If \((c_i + M_v') \cap A \neq \emptyset \) for all \(k \in \mathbb{N} \), we pick \(d_i \) out of \((c_i + M_v') \cap B \); otherwise out of
(c_i + M^v_i) \cap B with k maximal such that (c_i + M^v_i) \cap A \neq \emptyset. Since the intersection of a residue class of M^v_i in R_v with R_v is either empty or an entire residue class of a power of M_v in R_v, and B intersects all of these that A intersects, it is possible to find such d_i in B. Now for every a \in A either v'(a - d_i) \geq v'(a - c_i) for all i and so v'(h(a)) \geq v'(f_v(a)) \geq s, or v'(a - d_i) \geq s for some i and hence v'(h(a)) \geq s. To get a polynomial of degree n, set g(x) = (x - d_0)^{n-l}h(x), d_0 \in B.

\[\square\]

2. Polynomials mapping into a maximal power of M_v

If R is an infinite subring of a discrete valuation ring R_v, we will construct polynomials g_n(x) = (x - a_1) \ldots (x - a_n) that map R into the maximal possible (for a monic polynomial of degree n) power of M_v, by finding sequences (a_i) in R that show a nice distribution among the cosets of M^n_v \cap R, to serve as roots.

This generalizes a procedure of Pólya [16] (also used by Gunji and McQuillan [12], [14], Cahen [4] and others) for the special case where R_v = R_Q, Q being a prime ideal of index q in R such that R_Q is a discrete valuation ring: Pick \pi \in Q \setminus Q^2 and a complete set of residues r_0, ..., r_{q-1} of Q in R and define \[a_n = \sum_{i \geq 0} r_i \pi^i, \]
if \[n = \sum_{i \geq 0} c_i q^i\]
is the q-adic expansion of n. The resulting polynomials map R into the highest possible power of Q and can be used to give a regular basis of Int(R_v) (most clearly stated in [14]). Gilmer [10] has remarked that the construction even works for Int(D), D a quasi-local ring with principal maximal ideal.

The \mathcal{I}-sequences below are defined for any commutative ring R. All sequences are indexed by an initial segment of \mathbb{N} or \mathbb{N}_0. Quantifiers over indices of such a sequence are assumed to range over precisely the index-set.

2.0 Definition. If \mathcal{I} is a set of ideals in a commutative ring R, we define an \mathcal{I}-sequence in R to be a sequence \(a_n\) of elements in R with the property

\[\forall I \in \mathcal{I} \ \forall n, m \ \ a_n \equiv a_m \ mod I \iff [R : I] | n - m.\]

We define a homogeneous \mathcal{I}-sequence to be one with the additional property

\[\forall I \in \mathcal{I} \ \forall n \geq 1 \ a_n \in I \iff [R : I] | n.\]

(Any infinite \([R : I]\) we regard as dividing 0, but no other integer.) Note that \(a_1, a_2, \ldots\) is a homogeneous \mathcal{I}-sequence if and only if \(0 = a_0, a_1, a_2, \ldots\) is an \mathcal{I}-sequence.

2.1 Proposition. Let \(\mathcal{I} = \{I_n | n \in \mathbb{N}\}\) be a descending chain of ideals in a commutative ring R. Then there exists an infinite homogeneous \mathcal{I}-sequence in R.

Proof. Put \(I_0 = R\). For \(k \geq 0\), if \([I_k : I_{k+1}]\) is finite, let \(\{a_j^{(k)} | 0 \leq j < [I_k : I_{k+1}]\}\) be a system of representatives of \(I_k : I_{k+1}\) with \(a_0^{(k)} = 0\), otherwise let \(\{a_j^{(k)} | j \in \mathbb{N}_0\}\) be a sequence in \(I_k\) of elements pairwise incongruent mod \(I_{k+1}\), with \(a_0^{(k)} = 0\). If \(I_N \in \mathcal{I}\) with \([R : I_N]\) finite, then every \(n < [R : I_N]\) has a unique representation \(n = \sum_{k=0}^{N-1} j_k [R : I_k]\) with \(0 \leq j_k < [I_k : I_{k+1}]\), and we set \(a_n = \sum_{k=0}^{N-1} a_j^{(k)}\). If the indices of ideals in \(\mathcal{I}\) get arbitrarily large while remaining finite, this defines our \(\mathcal{I}\)-sequence inductively. Otherwise there exists \(I_N \in \mathcal{I}\) of maximal finite index such that either \([I_N : I_{N+1}]\) is infinite or \(I_m = I_N\) for \(m \geq N\). Define \(a_n\) for \(n < [R : I_N]\) as above. Then, in the first case, set \(a_m = a_q^{(N)} + a_r\) for \(m = q [R : I_N] + r\) with \(0 \leq r < [R : I_N]\), and \(a_m = a_r\) in the second. \[\square\]
2.2 Facts. (i) For \(I \in \mathcal{I} \) of finite index in \(R \), any \([R : I]\) consecutive terms of an \(\mathcal{I} \)-sequence form a complete set of representatives of \(R \mod I \).

(ii) If \((a_i)_{i=1}^n\) is an \(\mathcal{I} \)-sequence in \(R \) then \((r - a_i)_{i=1}^n\) is an \(\mathcal{I} \)-sequence for every \(r \in R \) and \((a_n - a_{n-1})_{i=0}^{n-1}\) is a homogeneous \(\mathcal{I} \)-sequence.

The following lemma will be needed for globalization.

2.3 Lemma. If \(a_1, \ldots, a_l \) is an \(\mathcal{I} \)-sequence for a chain of ideals \(\mathcal{I}, J \in \mathcal{I} \) with \([R : J] > 1 \), and \(b_1, \ldots, b_l \in R \) such that \(b_n \equiv a_n \mod J \) for \(1 \leq n \leq l \), then \((b_n) \) is also an \(\mathcal{I} \)-sequence, and homogeneous if \((a_n) \) is.

Proof. Let \(I \in \mathcal{I} \) and \(1 \leq n, m \leq l \). First suppose \(n \equiv m \mod [R : I] \). Then \(n = m \) or \([R : I] < 1 \). In the latter case \(J \subseteq I \), so \(b_n \equiv a_n \mod b_m \mod I \). Now suppose \(n \not\equiv m \mod [R : I] \). Either \(J \subseteq I \) or \(I \subseteq J \). If \(J \subseteq I \) then \(b_n \equiv a_n \not\equiv a_m \equiv b_m \mod I \). If \(I \subseteq J \) then \(b_n \equiv a_n \not\equiv a_m \equiv b_m \mod J \) (because \(0 \not\equiv n - m < [R : J] \)), hence \(b_n \not\equiv b_m \mod I \). Homogeneity is shown similarly.

From now on, \(R \) is always an infinite subring of a discrete valuation ring \(R_v \). Note that the definitions of \(\alpha_v, R(n) \) and \(v \)-sequence below depend only on \(M_v \) and \(R \), and thus do not distinguish between equivalent valuations.

2.4 Definition. A \(v \)-sequence for \(R \) is an \(\{M_v^n \cap R \mid n \in \mathbb{N}\} \)-sequence in \(R \). In other words, \((a_n)\) is a \(v \)-sequence for \(R \) if and only if for all \(n \in \mathbb{N} \) and all \(i, j \),

\[
a_i - a_j \in M_v^n \iff [R : M_v^n \cap R] \mid i - j
\]

and a homogeneous \(v \)-sequence if in addition, for all \(n \in \mathbb{N} \) and all \(j \geq 1 \),

\[
a_j \in M_v^n \iff [R : M_v^n \cap R] \mid j.
\]

If \([R : M_v^n \cap R]\) is infinite, distinct elements of a \(v \)-sequence must be incongruent mod \(M_v^n \cap R \). Proposition 2.1 guarantees the existence of an infinite homogeneous \(v \)-sequence for every infinite subring \(R \) of every discrete valuation ring \(R_v \).

2.5 Definition. For \(n \in \mathbb{N}_0 \), \(R \) an infinite subring of \(R_v \) and \(q \in \mathbb{N} \), let

\[
\alpha_v, R(n) = \sum_{j \geq 1} \left\lfloor \frac{n}{[R : M_v^j \cap R]} \right\rfloor \quad \text{and} \quad \alpha_v(n) = \sum_{j \geq 1} \left\lfloor \frac{n}{q^j} \right\rfloor.
\]

Infinite indices are allowed; \(\frac{n}{\infty} = 0 \). Since \(R \) is infinite, \(\alpha_v, R(n) \) is always a finite number. We will frequently use the fact that \(\alpha_v, R(n) > 0 \) if and only if \(n \geq [R : M_v \cap R] \). If \(Q \) is a prime ideal in a domain \(D \), such that \(D_Q \) is a discrete valuation ring, we write \(v_Q \) for the corresponding valuation with value group \(\mathbb{Z} \).

2.6 Facts. (i) If \(Q \) is a prime ideal of finite index \(q \) in \(R \) such that \(R_Q \) is a discrete valuation ring, then \(\alpha_{v_Q, R(n)}(n) = \alpha_v(n) \) for all \(n \).

(ii) If \(v \) is a discrete valuation, \(R \) an infinite subring of \(R_v \) and \(v' \) an extension of \(v \) with \([\Gamma_{v'} : \Gamma_v] = e \) finite, then \(\alpha_{v', R}(n) = e \cdot \alpha_v, R(n) \) for all \(n \).

Proof. (i) Since \(Q \) is maximal, \((QR_Q)^n \cap R = Q^n \) for all \(n \). Using the fact that \(Q \) contains a generator of \(QR_Q \) one sees that \([R : Q^n] = [R_Q : (QR_Q)^n] = q^n \) for all \(n \).

(ii) For \(k \in \mathbb{N} \), \(M_{v'}^k \cap R = (M_{v'}^k \cap R_v) \cap R = M_{v'}^k \cap R \), where \([x] \) denotes the smallest integer greater or equal \(x \). Each number \(\left\lfloor \frac{n}{[R : M_{v'}^k \cap R]} \right\rfloor \) appears \(e \) times, as \(\left\lfloor \frac{n}{[R : M_{v'}^k \cap R]} \right\rfloor \) for \(k = (j - 1)e + 1, \ldots, je \), in the sum for \(\alpha_{v', R}(n) \).
2.7 Lemma. Let \((a_i)_{i=1}^{n+1}, (b_i)_{i=1}^n\) and \((c_i)_{i=1}^n\) be \(v\)-sequences for \(R\), and \((c_i)_{i=1}^n\) homogeneous. Then

(a) \(v(c_1 \cdot \ldots \cdot c_n) = \alpha_{v,R}(n) \leq v(b_1 \cdot \ldots \cdot b_n) \leq \alpha_{v,R}(n) + \max_{1 \leq i \leq n} v(b_i),\)

(b) \(v\left(\prod_{i=1}^n (a_{n+1} - a_i)\right) = \alpha_{v,R}(n) \leq v\left(\prod_{i=1}^n (r - b_i)\right)\) for all \(r \in R\).

Proof. Since for finite index \(M_v^j \cap R\) every \([R : M_v^j \cap R]\) successive terms of a \(v\)-sequence form a complete residue system of \(R\) mod \(M_v^j \cap R\), we have \(\forall j \in \mathbb{N}\)

\[
\left|\{i \mid v(c_i) \geq j\}\right| = \left[\frac{n}{[R : M_v^j \cap R]}\right] \leq \left|\{i \mid v(b_i) \geq j\}\right| \leq \left[\frac{n}{[R : M_v^j \cap R]}\right] + 1.
\]

This implies (a) (and, since the 1 on the right can only occur if \([R : M_v^j \cap R]\) \(\nmid n, v(b_1 \cdot \ldots \cdot b_n) \leq \alpha_{v,R}(n) + \max_{1 \leq i \leq n} v(b_i) - \max\{j \mid [R : M_v^j \cap R]\) divides \(n\}\). By Fact 2.2 (ii) about \(I\)-sequences, (b) is a special case of (a).

2.8 Theorem. Let \(R\) be an infinite subring of \(R_v\). An \(R_v\)-basis of \(\text{Int}(R, R_v)\) is given by

\[f_0 = 1 \quad \text{and} \quad f_n(x) = \frac{\prod_{i=1}^n (x - a_i)}{\prod_{i=1}^n (a_{n+1} - a_i)} \quad (n \geq 1),\]

where \((a_n)_{n=1}^\infty\) is a \(v\)-sequence for \(R\).

Proof. An infinite \(v\)-sequence \((a_n)_{n=1}^\infty\) in \(R\) exists by Proposition 2.1 applied to \(\{M_v^n \cap R \mid n \in \mathbb{N}\}\). The \(f_n\), being a \(K\)-basis of \(K[x]\), are free generators of the \(R_v\)-module they generate in \(K[x]\); call this module \(F\). Since by Lemma 2.7 every \(f_n\) maps \(R\) to \(R_v\), \(F \subseteq \text{Int}(R, R_v)\). For the reverse inclusion we show the stronger statement that \(\text{Int}(A, R_v) \subseteq F\), where \(A = \{a_n \mid n \in \mathbb{N}\}\). Let \(f \in \text{Int}(A, R_v)\), \(f = \sum_{j=0}^N l_j f_j\), with \(l_j \in K\). We show inductively that the \(l_j\) are in \(R_v\). \(l_0 = f(a_1) \in R_v\).

The induction hypothesis is \(l_j \in R_v\) for \(0 \leq j < n\). Using this and the facts that \(f_j(a_i) = 0\) for \(j \geq i\) and \(f_j(a_{i+1}) = 1\), we see that \(f(a_{n+1}) = l_n + \sum_{j=0}^{n-1} l_j f_j(a_{n+1})\). Since \(f_j(a_i) \in R_v\) for all \(i, j\) (by Lemma 2.7) and \(f \in \text{Int}(A, R_v)\), the sum on the right as well as \(f(a_{n+1})\) is in \(R_v\), therefore \(l_n \in R_v\).

Remark. For an infinite subring \(R\) of \(R_v\), and \(A \subseteq R\), the proof of Theorem 2.8 shows that if \(A\) contains an infinite \(v\)-sequence for \(R\), then \(\text{Int}(A, R_v) = \text{Int}(R, R_v)\). The converse holds, too (the criterion for \(\text{Int}(A, R_v) = \text{Int}(R, R_v)\) in [7] is easily seen to be equivalent to \(A\) containing an infinite \(v\)-sequence for \(R\)).

Corollary 1. \(\alpha_{v,R}(n) = \max \{\min_{r \in R} v(f(r)) \mid f \text{ monic} \in K[x], \deg f = n\}\) and \(M_v^{-\alpha_{v,R}(n)} = \{\text{leading coefficients of } n\text{-th degree polynomials in } \text{Int}(R, R_v)\}\) \(\cup \{0\}\).

Proof. The second statement can be read off the theorem using Lemma 2.7 (b); the first one then follows by Theorem 1.2.

Pólya’s Satz IV [16] is a special case: if \(P\) is a prime ideal in a domain \(R\) such that \(R_P\) is a discrete valuation ring and \([R : P] = q\), then (by Proposition 1.4 with \(B = R\) and Fact 2.6 i) \(\alpha_q(n) = \max \{\min_{r \in R} v_P(f(r)) \mid f \in R[x] \setminus P[x], \deg f = n\}\).

Corollary 2. Let \(g_n(x) = \prod_{i=1}^n (x - a_i^{(n)})\), where \((a_i^{(n)})_{i=1}^n\) is a \(v\)-sequence for \(R\) when \(n \geq [R : M_v \cap R]\), and let \(g_n\) be any monic polynomial in \(R_v[x]\) of degree \(n\).
for $0 \leq n < [R : M_v \cap R]$. Further, for $n \in \mathbb{N}_0$, let $c_n \in K$ with $v(c_n) = -\alpha_{v,R}(n)$. Then $(c_n g_n)_{n \in \mathbb{N}_0}$ is an R_v-basis of $\text{Int}(R, R_v)$.

Proof. For all $n \in \mathbb{N}_0$, $r \in R$, $v(g_n(r)) \geq \alpha_{v,R}(n)$ (by Lemma 2.7, in case $n \geq [R : M_v \cap R]$, and because $g_n \in R_v[x]$ and $\alpha_{v,R}(n) = 0$ otherwise). By the maximality of $\alpha_{v,R}(n)$ (Corollary 1), $\min_{r \in R} v(g_n(r)) = \alpha_{v,R}(n)$. Therefore $(c_n g_n)_{n \in \mathbb{N}_0}$ is an R_v-basis of $\text{Int}(R, R_v)$ by Corollary 1 and Theorem 1.2 (ii). □

3. Polynomials mapping a subring into a Krull ring

Notation. Let S be a domain with quotient field K, such that $S = \bigcap_{v \in \mathcal{V}} R_v$, \mathcal{V} a set of discrete valuations (with value-group \mathbb{Z}) on K; and R an infinite subring of S. We put $I_v = \{\text{leading coefficients of } n\text{-th degree polynomials in } \text{Int}(R, S)\} \cup \{0\}$ and introduce names for recurring additional conditions:

(F) $\forall q \in \mathbb{N}$ \{ $Q \subseteq R | [R : Q] = q$ and $Q = M_v \cap R$ for some $v \in \mathcal{V}$ \} is a finite set.

(C) For every prime ideal Q of finite index in R, the set of $M_v^n \cap R$ with $n \in \mathbb{N}$, $v \in \mathcal{V}$, and $M_v \cap R = Q$, if not empty, forms a descending chain of ideals.

Note that (C) holds naturally in two cases: when there is only one M_v such that $M_v \cap R = Q$, and when every $M_v^n \cap R$ with $M_v \cap R = Q$ is a power of Q.

3.0 Lemma (Cahen [4]). If R is an infinite subring of a Krull ring S and $q \in \mathbb{N}$, then S has at most finitely many height 1 prime ideals P with $[R : P \cap R] = q$.

Proof. There exists $r \in R$ with $r^q - r \neq 0$. For every P with $Q = R \cap P$ of index q in R, $r^q - r \in P$, so the statement follows by the definition of Krull ring. □

3.1 Lemma. Let $v \in \mathcal{V}$ be such that $M_v \cap R = Q \neq (0)$, and L the quotient field of R. If R_Q is a valuation ring, then it is a discrete valuation ring and $R_Q = R_v \cap L$.

If Q is also a maximal ideal, then, for every $n \in \mathbb{N}$, $M_v^n \cap R$ is a power of Q.

Proof. For any valuation ring V with quotient field L and maximal ideal M we have $L \setminus V = \{r \in L^* \mid r^{-1} \in M\}$. Put $R_v \cap L = R_w$ and $M_v \cap L = M_w$; then R_v and R_Q are valuation rings with quotient field L and maximal ideals M_w and $Q R_Q$, respectively. $R_v \subseteq R_w$ and $M_v \cap R = M_v \cap R = Q$ imply $R_Q \subseteq R_w$ and also $Q R_Q \subseteq M_w$. By the latter inclusion $L \setminus R_Q = \{r \in L^* \mid r^{-1} \in Q R_Q\} \subseteq \{r \in L^* \mid r^{-1} \in M_w\} = L \setminus R_w$. This shows $R_Q = R_w = R_v \cap L$, so R_Q is a discrete valuation ring and every $M_v^n \cap R_Q$ is a power of $Q R_Q$. If Q is maximal, then $(Q R_Q)^k \cap R = Q^k$ for all k, so $M_v^n \cap R$ is a power of Q. □

3.2 Lemma. (C) implies: For every finite set \mathcal{M} of prime ideals of finite index in R and every $m \in \mathbb{N}$, there exists a sequence $(a_i)_{i=0}^m$ in R that is a homogeneous v-sequence for all v in \mathcal{V} with $M_v \cap R \in \mathcal{M}$, simultaneously.

Proof. For every $Q \in \mathcal{M}$, $\mathcal{I}_Q = \{M_v^n \cap R \mid v \in \mathcal{V}, n \in \mathbb{N}, M_v \cap R = Q\}$ (if not empty) is a descending chain by (C), so there exists a homogeneous \mathcal{I}_Q-sequence $(a_i^{(Q)})_{i=0}^m$ in R by Proposition 2.1. For each Q with $\mathcal{I}_Q \neq \emptyset$ let I_Q be an element of \mathcal{I}_Q with $[R : I_Q] > m$. $I_Q = M_v^n \cap R$ for some v and n, and therefore it contains Q^n. Since different Q are co-prime, there exists, by the Chinese Remainder Theorem, a sequence $(a_i)_{i=0}^m$ in R that is congruent to $(a_i^{(Q)})_{i=0}^m$ modulo I_Q for all $Q \in \mathcal{M}$. By Lemma 2.3, this a homogeneous \mathcal{I}_Q-sequence for all $Q \in \mathcal{M}$, i.e., a homogeneous v-sequence for all v with $M_v \cap R \in \mathcal{M}$. □
From Lemma 3.0, Lemma 3.1 and the fact that the powers of an ideal \(Q \) form a descending sequence, we conclude that the hypothesis of Theorem 3.4 below is satisfied in at least one natural setting:

3.3 Fact. If \(S \) is a Krull ring, \(\mathcal{V} = \{ v_P \mid P \in \text{Spec}^1(S) \} \), and \(R \) an infinite subring such that \(R_Q \) is a valuation ring for every finite index \(Q = P \cap R, P \in \text{Spec}^1(S) \), then (C) and (F) both hold.

In the following theorem, the case where \(S \) is a Dedekind ring and \(R = S \) is due to Cahen [4] (also pertinent: [5]).

3.4 Theorem. Let \(R \) be an infinite subring of \(S = \bigcap_{v \in \mathcal{V}} R_v \). If (C) and (F) hold, then

\[
I_n = \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_v,R(n)} \quad (n \in \mathbb{N}_0)
\]

and there exists a regular sequence of monic polynomials \((g_n)\) in \(R[x]\) such that

\[
\text{Int}(R, S) = \sum_{n \geq 0} I_n g_n,
\]

namely, \(g_n(x) = \prod_{i=1}^n (x - a_i^{(n)}) \), where \((a_i^{(n)})_{i=1}^n\) is a simultaneous v-sequence for all \(v \in \mathcal{V} \) with \([R : M_v \cap R] \leq n\).

Proof. \(\text{Int}(R, \bigcap_{v \in \mathcal{V}} R_v) = \bigcap_{v \in \mathcal{V}} \text{Int}(R, R_v) \), therefore \(I_n \subseteq \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_v,R(n)} \) (by Theorem 2.8, Corollary 1). For the reverse inclusion, let \(c \in \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_v,R(n)} \). Set \(\mathcal{V}_n = \{ v \in \mathcal{V} \mid \alpha_v,R(n) > 0 \} = \{ v \in \mathcal{V} \mid [R : M_v \cap R] \leq n \}; \) then \(\{ M_v \cap R \mid v \in \mathcal{V}_n \} \) is finite by (F). Let \((a_i^{(n)})_{i=1}^n\) in \(R \) be a homogeneous v-sequence for all \(v \in \mathcal{V}_n \) simultaneously (which exists by Lemma 3.2) and \(g_n(x) = \prod_{i=1}^n (x - a_i^{(n)}) \). Then \(\min_{r \in R} v(g(r)) \geq \alpha_v,R(n) \) for all \(v \in \mathcal{V} \) (by Lemma 2.7 when \(v \in \mathcal{V}_n \), and because \(\alpha_v,R(n) = 0 \) and \(g_n \in R[x] \) otherwise), which means \(cg(x) \in \text{Int}(R, \bigcap_{v \in \mathcal{V}} R_v) \) and hence \(c \in I_n \). This completes the proof of the first statement and also shows, for all \(n \geq 0 \), that \(I_n g_n \subseteq \text{Int}(R, \bigcap_{v \in \mathcal{V}} R_v) \), so the second follows by Lemma 0.1.

From now on, \(S \) is a Krull ring. By convention, the empty intersection or product of ideals of \(S \) equals \(S \). We denote the set of height 1 prime ideals of \(S \) by \(\text{Spec}^1(S) \) or \(\mathcal{P} \). If \(P \in \mathcal{P} \), we write \(\alpha_{P,R} \) for \(\alpha_{v_P,R} \) and, if \(j \in \mathbb{N}_0 \), \(P^{(j)} \) for \((PS_P)^j \cap S \). With this notation we have, for \(n \in \mathbb{N}_0 \) and \(P \in \mathcal{P} \):

\[
\alpha_{P,R}(n) = \sum_{j \geq 1} \left[\frac{n}{[R : P^{(j)} \cap R]} \right].
\]

3.5 Lemma. Let \(S \) be a Krull ring and \(\mathcal{V} = \{ v_P \mid P \in \mathcal{P} \} \). If (C) holds, then \(\text{Int}(R, S) \) has a regular basis if and only if \(\bigcap_{P \in \mathcal{P}, [R : P \cap R] \leq n} P^{(\alpha_{P,R}(n))} \) is principal for all \(n \).

Proof. \(\alpha_{P,R}(n) \neq 0 \) if and only if \([R : P \cap R] \leq n \). Since (F) holds by Lemma 3.0, this only happens for finitely many \(P \) for each \(n \). If \(\{ a_P \mid P \in \mathcal{P} \} \) is a set of integers, only finitely many of them non-zero, then \(\bigcap_{P \in \mathcal{P}} (PS_P)^{a_P} \) is principal if and only if \(\bigcap_{P \in \mathcal{P}} (PS_P)^{a_P} = \bigcap_{a > 0} P^{(aP)} \) is, namely if there exists \(c \in K \) with \(v_P(c) = a_P \) for all \(P \in P \). If all \(a_P \) are non-negative then \(\bigcap_{P \in \mathcal{P}} (PS_P)^{a_P} = \bigcap_{a > 0} P^{(aP)} \). Applied to \(\bigcap_{P \in \mathcal{P}} (PS_P)^{-\alpha_{P,R}(n)} \), which is \(I_n \) by Theorem 3.4, with Lemma 0.1 (iii) in mind, this proves the claim. \(\square \)
3.6 Theorem. Let R be an infinite subring of a Krull ring S, $\mathcal{P} = \text{Spec}^1(S)$, $\mathcal{P}^* = \{ P \in \mathcal{P} \mid [R : P \cap R] \text{ finite} \}$ and $Q = \{ R \cap P \mid P \in \mathcal{P}^* \}$. If R_Q is a valuation ring for all $Q \in \mathcal{Q}$, then R_Q is a discrete valuation ring for all $Q \in \mathcal{Q}$ and

\[
\text{Int}(R,S) \text{ has a regular basis } \iff \forall q \in \mathbb{N} \bigcap_{P \in \mathcal{P}} P^{(e_P)} \text{ is a principal ideal of } S,
\]

where e_P is the ramification index of PS_P over QR_Q, for $P \in \mathcal{P}^*, Q = P \cap R$.

Proof. Let $\mathcal{P}_q = \{ P \in \mathcal{P} \mid [R : P \cap R] = q \}, P \in \mathcal{P}_q, Q = P \cap R, L$ the quotient field of R; then by Lemma 3.1 $R_Q = S_P \cap L$ and R_Q is a discrete valuation ring. $v'_P = (1/e_P)v_P$ is equivalent to v_P and is an extension of v_Q to K with $[\Gamma v'_P : \Gamma v_Q] = e_P$. By the Facts 2.6 (ii) and (i), $\alpha_P(n) = \alpha_{P'}(q(n) = e_P \alpha_Q(n) = e_P \alpha_Q(n)$.

If we call the left and right sides of the claimed equivalence (l) and (r), respectively, then (l) is equivalent to (l') ‘$\forall q \in \bigcap_{P \in \mathcal{P}_q} P^{(\alpha_P(n))} \text{ principal}' by Lemma 3.5 (whose condition (C) holds by Fact 3.3). We know that

\[
\bigcap_{P \in \mathcal{P}} P^{(\alpha_P(n))} = \bigcap_{q \leq n} \bigcap_{P \in \mathcal{P}_q} P^{(e_P \alpha_Q(n))}.
\]

The latter is clearly principal provided all $\bigcap_{P \in \mathcal{P}_q} P^{(e_P)}$ are; thus (r) \Rightarrow (l').

For (l) \Rightarrow (r), suppose $\bigcap_{q \leq n} \bigcap_{P \in \mathcal{P}_q} P^{(e_P \alpha_Q(n))} = s_n S$ for all n. We see that $s_n S = \bigcap_{P \in \mathcal{P}_q} P^{(e_P)} \cap \bigcap_{q < n} \bigcap_{P \in \mathcal{P}_q} P^{(e_P \alpha_Q(q))}$, because $\alpha_Q(q) = 1$. This allows an induction on q: from the formula for $s_n S$ we conclude that $\bigcap_{P \in \mathcal{P}_q} P^{(e_P)}$ is principal if $\bigcap_{P \in \mathcal{P}_q} P^{(e_P)}$ is principal for all $l < q$.

Corollary 1. If $R \subseteq S$ is an extension of Krull rings such that $\text{ht}(P \cap R) \leq 1$ for all height 1 prime ideals P of S, then

\[
\text{Int}(R,S) \text{ has a regular basis } \iff \forall q \in \mathbb{N} \bigcap_{Q \in \text{Spec}^1(R) \mid [R : Q] = q} \text{div}(QS) \text{ is principal},
\]

where $\text{div}(QS)$ means the smallest divisorial ideal containing QS.

Proof. If $R \subseteq S$ is an extension of Krull rings with the stated property and Q is in $\text{Spec}^1(R)$, then $\text{div}(QS) = \bigcap_{P \in \text{Spec}^1(S) \mid [P \cap R = Q]} P^{(e_P)}$, where $e_P = e(P|Q)$ is the ramification index of PS_P over QR_Q [1, p. 183].

In particular, if $R \subseteq S$ is an extension of Dedekind rings, then

\[
\text{Int}(R,S) \text{ has a regular basis } \iff \forall q \in \mathbb{N} \text{Q} \in \text{Spec}(R) \mid [R : Q] = q \text{QS is principal}.
\]

A different specialization gives Ostrowski’s criterion [15]. If S is a Krull ring,

\[
\text{Int}(S) \text{ has a regular basis } \iff \forall q \in \mathbb{N} \bigcap_{P \in \text{Spec}^1(S) \mid [S : P] = q} P \text{ is principal}.
\]

When a regular basis exists, we can give a fairly explicit description of one. (For $\text{Int}(S)$, S a Dedekind ring, there also is a different construction by Gerboud [9].)
Corollary 2. In the situation of Theorem 3.6, if \(\bigcap_{[R : P \cap R] = q} P(\epsilon_P) = c_q S \ (q \in \mathbb{N}) \) then a regular basis of \(\text{Int}(R, S) \) is given by \(f_0 = 1, \)
\[
f_n(x) = \prod_{q \leq n} c_q^{-\alpha_q(n)} \prod_{i=1}^{n}(x - a_i^{(n)}) \quad (n \in \mathbb{N})
\]
where \((a_i^{(n)})_{i=1}^{n} \subseteq R\) is a \(v_P\)-sequence for all \(P \in \mathcal{P} \) with \([R : P \cap R] \leq n\).

Proof. \(v_P(epsilon^{(-\alpha_q(n))}) = -\epsilon, \alpha_q(n) = -\alpha_{P,R}(n) \) for the \(P \in \mathcal{P} \) with \([R : P \cap R] = q\), and zero for all other \(P \in \mathcal{P} \), so \(v_P(\prod_{q \leq n} c_q^{-\alpha_q(n)}) = -\alpha_{P,R}(n) \) for all \(P \in \mathcal{P} \) (since \(\alpha_{P,R}(n) = 0 \) if \(n < [R : P \cap R] \)). Therefore the \(f_n \) are an \(S_P\)-basis of \(\text{Int}(R, S_P) \) for all \(P \in \mathcal{P} \) simultaneously, by Theorem 2.8, Corollary 2. \(\square \)

References

Institut für Mathematik C, Technische Universität Graz, Kopernikusgasse 24, A-8010 Graz, Austria
E-mail address: frisch@blah.math.tu-graz.ac.at