ALMOST EVERYWHERE CONVERGENCE OF LACUNARY PARTIAL SUMS OF VILENKIN-FOURIER SERIES

WO-SANG YOUNG

(Communicated by J. Marshall Ash)

Abstract. We prove that if $f \in L^p$, $p > 1$, and $\{n_k\}$ is any lacunary sequence of positive integers, then the sequence of n_kth partial sums of Vilenkin-Fourier series of f converges almost everywhere to f.

1. Introduction

Let $G = \prod_{i=0}^\infty Z_{p_i}$ be the direct product of cyclic groups of order p_i, where $\{p_i\}_{i \geq 0}$ is a sequence of integers with $p_i \geq 2$. Let μ be the Haar measure on G normalized by $\mu(G) = 1$. For $x = \{x_k\} \in G$, let $\phi_k(x) = \exp(2\pi i x_k/p_k)$, $k = 0, 1, 2, \ldots$. The Vilenkin system $\{\chi_n\}$ is the set of all finite products of $\{\phi_k\}$, and is enumerated in the following manner. Let $m_0 = 1$, $m_k = \prod_{i=0}^{k-1} p_i$, $k = 1, 2, \ldots$. We express each nonnegative integer n as a finite sum in the form $n = \sum_{k=0}^\infty \alpha_k m_k$, where $0 \leq \alpha_k < p_k$, and define $\chi_n = \prod_{k=0}^\infty \phi_k^{\alpha_k}$. The functions $\{\chi_n\}$ are the characters of G, and they form a complete orthonormal system on G. If $p_i = 2$, $i = 0, 1, 2, \ldots$, then $\{\phi_k\}$ are the Rademacher functions and $\{\chi_n\}$ are the Walsh functions. In this paper there is no restriction on the orders $\{p_i\}$.

We consider Fourier series with respect to $\{\chi_n\}$. For $f \in L^1$, let $\hat{f}(j) = \int_G f(t)\chi_j(t) d\mu(t)$, $j = 0, 1, 2, \ldots$, and $S_n f = \sum_{j=0}^{n-1} \hat{f}(j)\chi_j$, $n = 1, 2, \ldots$. Not much is known about the almost everywhere convergence of partial sums when there is no restriction on the orders $\{p_i\}$. We have the following result.

Theorem. Let $1 < p < \infty$ and $\{n_k\}_{k \geq 1}$ be a lacunary sequence of positive integers, i.e., there is $q > 1$ such that $n_{k+1}/n_k \geq q$, $k = 1, 2, \ldots$. Then there is a constant C_p such that

$$\|\sup_k |S_{n_k} f|\|_p \leq C_p \|f\|_p, \quad f \in L^p.$$ (1.1)

It follows that $\lim_{k \to \infty} S_{n_k} f(x) = f(x)$ a.e. for all $f \in L^p$.
In the proof that follows, C and C_p will denote absolute constants which may vary from line to line.

2. Proof of the Theorem

We first prove (1.1). For $k = 0, 1, \ldots$, let L_k be the positive integer such that $2^{L_k} \leq p_k < 2^{L_k+1}$. Since every lacunary sequence can be decomposed into a finite number of lacunary subsequences with ratio $q = 2$, we may assume, by adding more terms to the sequence if necessary, that \(\{n_j\} \) can be relabelled \(\{n_k, \ell\} = 0, 1, \ldots, \ell = 0, 1, \ldots, L_k \), such that for $k = 0, 1, \ldots, 2^\ell m_k \leq n_k, \ell < 2^\ell+1 m_k$ if $\ell = 0, 1, \ldots, L_k - 1$, and $2^\ell m_k \leq n_k, L_k < m_k + 1$. (There is no n_k, L_k term if $2^L_k m_k = m_k + 1$.) Also, it is sufficient to show that there is a constant C_p such that

\[
(2.1) \quad \sup_{k=0, \ldots, N-1} |S_{n_k, \ell}f| \leq C_p \|f\|_p
\]

for all $f \in L^p$, $N = 1, 2, \ldots$.

Let $f_k = S_{m_{k+1}}f - S_{m_k}f$, $k = 0, 1, \ldots$, and $f_{-1} = S_1f$. We observe that

\[
\sup_{k=0, \ldots, N-1} |S_{n_k, \ell}f| \leq \sup_{\ell=0, \ldots, L_k} |S_{n_k, \ell}f_k| + \sup_{k=0, \ldots, N-1} |S_{m_k}f|.
\]

Since \(\{S_{n_k}f\} \) is a martingale (see, e.g., [5]), it follows from Doob’s inequality (\(\|\sup_{k \geq 0} |S_{n_k}f| \|_p \leq C_p \|f\|_p \), $f \in L^p$) that (2.1) will be proved if we have

\[
(2.2) \quad \sup_{k=0, \ldots, N-1} |S_{n_k, \ell}f_k| \leq C_p \|f\|_p,
\]

for all $f \in L^p$, $N = 1, 2, \ldots$.

Now,

\[
\sup_{k=0, \ldots, N-1} |S_{n_k, \ell}f_k| \leq \left(\sum_{k=0}^{N-1} |S_{n_k, \ell}f_k|^2 \right)^{1/2} + \sup_{\ell=0, \ldots, L_k-2} |S_{n_k, \ell}f_k|
\]

\[
+ \left(\sum_{k=0}^{N-1} |S_{n_k, L_k-1}f_k|^2 \right)^{1/2} + \left(\sum_{k=0}^{N-1} |S_{n_k, L_k}f_k|^2 \right)^{1/2}.
\]

For each of $\ell = 0, L_k - 1$ and L_k, we apply [5, Theorem 2] and Burkholder’s result for martingales [1, Theorem 3.2] to get

\[
\left\| \left(\sum_{k=0}^{N-1} |S_{n_k, \ell}f_k|^2 \right)^{1/2} \right\|_p \leq C_p \left\| \left(\sum_{k=0}^{N-1} |f_k|^2 \right)^{1/2} \right\|_p
\]

\[
\leq C_p \|f\|_p.
\]

To prove (2.2) it remains to show

\[
(2.3) \quad \sup_{\ell=0, \ldots, L_k-2} |S_{n_k, \ell}f_k| \leq C_p \|f\|_p
\]

for all $f \in L^p$, $N = 1, 2, \ldots$.
We shall use the following operators. Let $k = 0, 1, \ldots$. If $L_k > 2$, define, for $\ell = 1, \ldots, L_k - 2$, the sequence $\{a_{k,\ell}(n)\}_{n \geq 0}$ by
\[
a_{k,\ell}(n) = \begin{cases}
1 & \text{if } 2^\ell m_k \leq n < 2^{\ell+1} m_k, \\
\frac{j}{2^\ell - 1} & \text{if } (2^{\ell-1} + j)m_k \leq n < (2^{\ell-1} + j + 1)m_k, \\
1 - \frac{j + 1}{2^\ell - 1} & \text{if } (2^{\ell+1} + j)m_k \leq n < (2^{\ell+1} + j + 1)m_k, \\
0 & \text{otherwise},
\end{cases}
\]
and set
\[
A_{k,\ell}f = \sum_{n=0}^{\infty} a_{k,\ell}(n) \hat{f}(n) \chi_n.
\]
It is proved in [6, pp. 665-666] that
\[
\left\| \left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_k - 2} |A_{k,\ell}f|^2 \right)^{1/2} \right\|_p \leq C_p \|f\|_p, \quad f \in L^p, \quad N = 1, 2, \ldots.
\]
(We interpret a sum $\sum_{j=k}^{\ell}$ with $\ell < k$ as zero.)

The second operator is defined as follows. Let $k = 0, 1, \ldots$. If $L_k \geq 2$, define, for $\ell = 1, \ldots, L_k - 1$, the sequence $\{b_{k,\ell}(n)\}_{n \geq 0}$ by
\[
b_{k,\ell}(n) = \begin{cases}
1 & \text{if } m_k \leq n < 2^{\ell-1} m_k \text{ or } m_{k+1} - (2^{\ell-1} - 1)m_k \leq n < m_{k+1}, \\
1 - \frac{j}{2^\ell - 1} & \text{if } (2^{\ell-1} + j)m_k \leq n < (2^{\ell-1} + j + 1)m_k \text{ or } \\
m_{k+1} - (2^{\ell-1} + j)m_k \leq n < m_{k+1} - (2^{\ell-1} + j - 1)m_k, \\
0 & \text{otherwise}.
\end{cases}
\]
For $f \in L^1$, set
\[
B_{k,\ell}f = \sum_{n=0}^{\infty} b_{k,\ell}(n) \hat{f}(n) \chi_n.
\]
To estimate $B_{k,\ell}f$, we need the following definitions. Let $\{G_k\}$ be the sequence of subgroups of G defined by
\[
G_0 = G, \quad G_k = \prod_{i=0}^{k-1} \{0\} \times \prod_{i=k}^{\infty} \mathbb{Z}_{p_i}, \quad k = 1, 2, \ldots.
\]
We shall identify G with the unit interval $(0, 1)$ by associating with each $\{x_i\} \in G$, $0 \leq x_i < p_i$, the point $\sum_{i=0}^{\infty} x_i m_i^{-1} \in (0, 1)$. If we disregard the countable set of p_i-rationals, this mapping is one-to-one, onto and measure preserving. On the
interval \((0, 1)\), cosets of \(G_k\) are intervals of the form \((jm_k^{-1}, (j + 1)m_k^{-1})\), \(j = 0, 1, \ldots, m_k - 1\). A set \(I\) is called a generalized interval if \(I \subset x + G_k\) for some \(x \in G\), \(k = 0, 1, \ldots, I\) is a union of cosets of \(G_{k+1}\), and \(I\) is an interval if we consider \(x + G_k\) as a circle.

Let

\[
Mf(x) = \sup_{I \text{ generalized interval}} \frac{1}{\mu(I)} \int_I |f| \, d\mu
\]

be the Hardy-Littlewood maximal function for the Vilenkin system. The following pointwise estimate will be obtained in \(\S 3\).

Lemma. There is a constant \(C\) such that

\[
\sup_{\ell = 1, \ldots, L_k - 1} \sup_{k=0,1,\ldots} |B_{k,\ell}f(x)| \leq CMf(x), \quad f \in L^1, \ x \in G.
\]

To estimate \(S_{n_k,\ell}f_k\), \(\ell = 1, \ldots, L_k - 2\), \(k = 0, 1, \ldots\), we shall use the part of \(b_{k,\ell}(n)\) with \(n \in [m_k, 2^\ell m_k)\). In order to get rid of the remaining part of \(b_{k,\ell}(n)\), we define

\[
H^N f = \sum_{k=0}^{N-1} \left(S_{2^k,1}f - S_{m_k}f \right).
\]

Since \(H^N f = S_{m,N}f - \sum_{k=0}^{N-1} \left(S_{m_{k+1}}f - S_{2^k - 1, m_k}f \right)\), and it is proved in [4, Theorem 1*] that

\[
\left\| \sum_{k=0}^{N-1} \left(S_{m_{k+1}}f - S_{2^k - 1, m_k}f \right) \right\|_p \leq C_p \|f\|_p
\]

for all \(f \in L^p\), \(N = 1, 2, \ldots\), we have

\[
(2.5) \quad \|H^N f\|_p \leq C_p \|f\|_p, \quad f \in L^p, \ N = 1, 2, \ldots.
\]

(See also [2].)

We are now ready to prove (2.3). We observe that for \(k = 0, \ldots, N - 1, \ell = 1, \ldots, L_k - 2\),

\[
S_{n_k,\ell}f_k = B_{k,\ell}(H^N f) + S_{n_k,\ell}(A_{k,\ell}f).
\]

Hence

\[
(2.6) \quad \sup_{\ell = 1, \ldots, L_k - 2} \sup_{k=0,1,\ldots} |S_{n_k,\ell}f_k| \leq \sup_{\ell = 1, \ldots, L_k - 2} B_{k,\ell}(H^N f) + \left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_k-2} |S_{n_k,\ell}(A_{k,\ell}f)|^2 \right)^{1/2}.
\]

To estimate the first term on the right, we apply the lemma, the fact that the Hardy-Littlewood maximal operator \(M\) is bounded in \(L^p\) (see [3]) and (2.5). We have

\[
\left\| \sup_{\ell = 1, \ldots, L_k - 2} |B_{k,\ell}(H^N f)| \right\|_p \leq C \|M(H^N f)\|_p
\]

\[
\leq C_p \|H^N f\|_p \leq C_p \|f\|_p
\]
for all $f \in L^p$, $N = 1, 2, \ldots$. For the last term in (2.6) we use [5, Theorem 2] and (2.4). We obtain

$$\left\| \sum_{k=0}^{N-1} \sum_{\ell=1}^{L_k-2} |S_{n_k,\ell} (A_{k,\ell} f)|^2 \right\|_p^{1/2} \leq C_p \left\| \sum_{k=0}^{N-1} \sum_{\ell=1}^{L_k-2} |A_{k,\ell} f|^2 \right\|_p^{1/2},$$

for all $f \in L^p$, $N = 1, 2, \ldots$. This proves (2.3). The proof of (1.1) will be complete once we prove the lemma.

Finally, if $f \in L^p$, $\lim_{k \to \infty} \|S_{m_k} f - f\|_p = 0$ since $S_{m_k} f$ is the average of f over the cosets of G_k. As a consequence of this and (1.1), we have $\lim_{k \to \infty} S_{m_k} f(x) = f(x)$ a.e.

3. Proof of the Lemma

We shall use the following notation. For each generalized interval I, we define the generalized interval $3I$ as follows. If $I = G$, let $3I = G$. Suppose I is a proper subset of $x + G_k$, $x \in G$, $k = 0, 1, 2, \ldots$, and is the union of cosets of G_{k+1}. If $\mu(I) \geq \mu(G_k)/3$, let $3I = x + G_k$. If $\mu(I) < \mu(G_k)/3$, consider $x + G_k$ as a circle and define $3I$ to be the interval in this circle which has the same center as I and has measure $\mu(3I) = 3\mu(I)$. For all cases, we have $\mu(3I) \leq 3\mu(I)$.

For $k = 0, 1, \ldots, \ell = 1, \ldots, L_k - 1$ and $f \in L^1$, we have

$$B_{k,\ell} f(x) = \int_G f(t) \left[\sum_{n=0}^{\infty} b_{k,\ell}(n) \chi_n(x - t) \right] d\mu(t).$$

Since $b_{k,\ell}(n)$ vanishes for $n \notin [m_k, m_{k+1})$ and is constant for $n \in [\alpha m_k, (\alpha + 1)m_k)$, $\alpha = 0, 1, \ldots$, we get

$$\sum_{n=0}^{\infty} b_{k,\ell}(n) \chi_n = \sum_{\alpha=1}^{p_k-1} b_{k,\ell}(\alpha m_k) \sum_{n=\alpha m_k}^{(\alpha+1)m_k-1} \chi_n = \sum_{\alpha=1}^{p_k-1} b_{k,\ell}(\alpha m_k) \phi_k^\alpha D_m,$$

where $D_n = \sum_{j=0}^{n-1} \chi_j$, $n = 1, 2, \ldots$, denotes the nth Dirichlet kernel. Since $D_m = \mu(G_k)^{-1} \chi_{G_k}$, we have

$$(3.1) \quad B_{k,\ell} f(x) = \frac{1}{\mu(G_k)} \int_{x + G_k} f(t) M_{k,\ell}(x - t) \, d\mu(t),$$

where

$$M_{k,\ell} = \sum_{\alpha=1}^{p_k-1} b_{k,\ell}(\alpha m_k) \phi_k^\alpha$$

$$= \sum_{\alpha=1}^{2^\ell-1} b_{k,\ell}(\alpha m_k) \phi_k^\alpha + \phi_k^0 + \sum_{\alpha=-2^\ell}^{1} b_{k,\ell}(p_k + \alpha m_k) \phi_k^\alpha - \phi_k^0.$$
Let
\[D_{k,j} = \sum_{a=-j}^{j} \phi_{k}^{a}, \quad j = 0, 1, \ldots, 2^{L_k} - 1, \]
and
\[K_{k,n} = \frac{1}{n} \sum_{j=0}^{n-1} D_{k,j}, \quad n = 1, \ldots, 2^{L_k} - 1. \]

Then
\[M_{k,\ell} = \frac{1}{2^{\ell-1}} \left(D_{k,2^{\ell-1}} + D_{k,2^{\ell-1}+1} + \cdots + D_{k,2^\ell-1} \right) - \phi_{k}^{0} \]
\[= 2K_{k,2^{\ell}} - K_{k,2^{\ell}-1} - \phi_{k}^{0}. \]

For \(n = 1, \ldots, 2^{L_k} - 1 \), let
\[\sigma_{k,n} f(x) = \frac{1}{\mu(G_k)} \int_{x+G_k} f(t)K_{k,n}(x-t) \, d\mu(t). \]

From (3.1) and (3.2) we obtain
\[|B_{k,\ell} f(x)| \leq 2|\sigma_{k,2^{\ell}} f(x)| + |\sigma_{k,2^{\ell}-1} f(x)| + M f(x). \]

The lemma will be proved if we show
\[|\sigma_{k,n} f(x)| \leq C M f(x), \]
for all \(k = 0, 1, \ldots, n = 1, \ldots, 2^{L_k} - 1, \quad x \in G. \)

By a direct computation we have
\[K_{k,n}(x) = \begin{cases} \frac{1}{n} \left(\frac{\sin^{2} \frac{\pi x}{p_{k}}}{\sin^{2} \frac{\pi x}{p_{k}}} \right) & \text{if } x_k \neq 0, \\ n & \text{if } x_k = 0, \end{cases} \]
and hence
\[0 \leq K_{k,n}(x) \leq \min \left\{ \left(\frac{n \sin^{2} \frac{\pi x}{p_{k}}} {p_{k}} \right)^{-1}, n \right\}. \]

Let \(I \) be a generalized interval containing \(x \) such that \(I \subset x + G_k \), \(I \) is a union of cosets of \(G_{k+1} \) and
\[\frac{p_{k}}{n} - 1 < \frac{\mu(I)}{\mu(G_{k+1})} \leq \frac{p_{k}}{n}. \]
(Note that \(p_{k}/n \geq 2 \) since \(n \leq 2^{L_k} - 1 \).) For \(j = 1, 2, \ldots, \), let \(3^{j+1} I = 3(3^j I) \), and \(J = \min\{ j \geq 1 : 3^j I = x + G_k \} \). Then
\[|\sigma_{k,n} f(x)| \leq \frac{1}{\mu(G_k)} \int_{3I} |f(t)|K_{k,n}(x-t) \, d\mu(t) \]
\[+ \sum_{j=1}^{J-1} \frac{1}{\mu(G_k)} \int_{3^{j+1} I \setminus 3^j I} |f(t)|K_{k,n}(x-t) \, d\mu(t). \]
By (3.4),
\[
\frac{1}{\mu(G_k)} \int_{3I} |f(t)|K_{k,n}(x-t) \, d\mu(t) \leq \frac{3\mu(I)}{\mu(I)} \frac{1}{\mu(3I)} \int_{3I} |f(t)| \, d\mu(t) \leq CMf(x).
\]
To estimate the last term in (3.5), we apply the other estimate in (3.4). We observe that when \(x \in I, t \notin 3^j I, j = 1, \ldots, J - 1 \),
\[
\left| \sin \frac{\pi(x_k - t_k)}{p_k} \right| \geq \frac{C\mu(3^{j-1}I)}{\mu(G_k)}.
\]
Hence
\[
\frac{1}{\mu(G_k)} \int_{3^{j+1}I \setminus 3^j I} |f(t)|K_{k,n}(x-t) \, d\mu(t)
\leq \frac{\mu(3^{j+1}I)}{\mu(G_k)} \frac{1}{\mu(3^{j+1}I)} \int_{3^{j+1}I \setminus 3^j I} |f(t)| \left(\frac{n \sin^2 \frac{\pi(x_k - t_k)}{p_k}}{p_k} \right)^{-1} \, d\mu(t)
\leq C3^{-j} \frac{\mu(G_k)}{n\mu(I)} \int_{3^{j+1}I} |f(t)| \, d\mu(t)
\leq C3^{-j} Mf(x).
\]
Substituting these estimates into (3.5) and summing over \(j \), we obtain (3.3). The lemma follows.

This completes the proof of the theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA T6G 2G1