THE MULTIPLIER OPERATORS ON THE WEIGHTED PRODUCT SPACES

LUNG-KEE CHEN AND DASHAN FAN

(Communicated by J. Marshall Ash)

Abstract. In this paper, we proved the boundedness of multiplier operators on the weighted L^p product spaces.

Let $m(\xi)$ be a function on \mathbb{R}^n and let f be a smooth function on \mathbb{R}^n. Suppose

$$T_m f(\xi) = m(\xi) \hat{f}(\xi).$$

Then $T_m f$ is called a multiplier operator. It is well known that a multiplier operator is bounded on the weighted L^p, $1 < p < \infty$, spaces for some suitable weights if the function $m(\xi)$ satisfies Hörmander’s condition

$$\int_{s\leq|\xi|\leq2s} |\partial_\xi^\alpha m(\xi)|^2 d\xi \leq s^{n-2|\alpha|}$$

for $|\alpha| \leq [n/2] + 1$ (see [3, page 418]). The keys to proving the boundedness of multiplier operator in the weighted L^p spaces are basically

(i) the Hardy-Littlewood maximal operator is bounded by the sharp function, more precisely,

$$\int (M f(x))^p W(x) dx \leq C \int (f^\#(x))^p W(x) dx$$

where $W \in A_p$, $1 < p \leq \infty$, and

$$f^\#(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy,$$

f_Q being the average of f over cube Q in \mathbb{R}^n;

(ii) an estimate,

$$(T_m f^\#(x) \leq C (M |f|^q(x))^{1/q}$$

for some $q > 1$.

The purpose of this paper is to study the boundedness of multiplier operators on the weighted L^p product spaces.

Denote

$$\text{osc}_R f = \inf_{f_1, f_2} \left(\frac{1}{|R|} \int_R |f(x_1, x_2) - f_1(x_1) - f_2(x_2)|^2 dx_1 dx_2 \right)^{1/2}$$

Received by the editors May 25, 1995.

1991 Mathematics Subject Classification. Primary 42B15, 42B30.

©1996 American Mathematical Society

3755
where R is any rectangle in $R^{n_1} \times R^{n_2}$ and the inf is taken over all functions f_1 and f_2 depending on the variables x_1 and x_2 respectively.

As in the “one dimensional case”, if one defines the sharp function by

$$f^\#(x) = \sup_{x \in R} \text{osc}_R f,$$

then one might expect to show that the strong maximal operator

$$M_s f(x) = \sup_{t_1, t_2 > 0} \frac{1}{t_1 t_2^{n_1 + n_2}} \int_{|y_1| \leq t_1} \int_{|y_2| \leq t_2} |f(x_1 - y_1, x_2 - y_2)| dy_1 dy_2$$

is bounded by the sharp function. Unfortunately, such an observation is not true due to Carleson’s counterexample [1]. To remove the difficulty on the sharp function in order to obtain an inequality similar to (1), R. Fefferman considered a sharp operator (see [2]) defined as follows.

Definition. Let T be an L^2 bounded linear operator. Suppose there exists an operator $T^\#$ defined on positive locally square integrable functions which is monotone, i.e.

$$T^\# f(x) \leq T^\# g(x)$$

if $f(x) \leq g(x)$ for all $x \in R^{n_1} \times R^{n_2}$ such that $\text{osc}_R (Tf) \leq \gamma^{-\sigma} T^\# f(x)$ for all $x \in R$, R a rectangle on $R^{n_1} \times R^{n_2}$, and for some $\sigma > 0$, where f is supported outside of the γ-fold dilation of R, $\gamma \geq 2$.

Based on this definition of a sharp operator, R. Fefferman [2] obtained the following inequality:

$$\int \int S^2(Tf)(x) \phi(x) dx \leq C \int \int [(I + T^\#)(|f|)^2] M_s(M_s(M_s(\phi)))(x) dx$$

where I denotes the identity operator and S is the area function defined on the product spaces. Using this inequality, he obtained the following theorem, which we will apply in this paper.

Theorem A ([2]). If T is a bounded linear operator on $L^2(R^{n_1} \times R^{n_2})$ whose sharp operator is

$$T^\# f = M_s(f^2)^{1/2},$$

then for $p > 2$

$$\int_{R^{n_1} \times R^{n_2}} |Tf|^p W \leq C \int_{R^{n_1} \times R^{n_2}} |f|^p W$$

whenever $W \in A_{p/2}(R^{n_1} \times R^{n_2})$.

Proof. See [2, page 123].

In this paper, we will prove the following Theorem.
Theorem. Let \(m(\xi_1, \xi_2) \) be a function and \(m \in C^{p_1}(\mathbb{R}^{n_1} \setminus \{0\}) \times C^{p_2}(\mathbb{R}^{n_2} \setminus \{0\}) \), where \(p_1 = \lceil n_1/2 \rceil + 1 \), and \(p_2 = \lceil n_2/2 \rceil + 1 \). Suppose

\[
\int_{|\xi_1| \approx s_1} \int_{|\xi_2| \approx s_2} |\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} m(\xi_1, \xi_2)|^2 \, d\xi_1 \, d\xi_2 \leq C s_1^{-2|\alpha_1|+n_1} s_2^{-2|\alpha_2|+n_2};
\]

(2)

\[
\sup_{\xi_2} \int_{|\xi_1| \approx s_1} |\partial_{\xi_1}^{\alpha_1} m(\xi_1, \xi_2)|^2 \, d\xi_1 \, d\xi_2 \leq C s_1^{-2|\alpha_1|+n_1};
\]

\[
\sup_{\xi_1} \int_{|\xi_2| \approx s_2} |\partial_{\xi_2}^{\alpha_2} m(\xi_1, \xi_2)|^2 \, d\xi_1 \, d\xi_2 \leq C s_2^{-2|\alpha_2|+n_2}
\]

for every \(|\alpha_1| \leq p_1 \) and \(|\alpha_2| \leq p_2 \), where \(|\xi_i| \approx s_i \) signifies that \(s_i \leq |\xi_i| \leq 2s_i \).

Then i) for \(2 < p < \infty \),

\[
\int |T_m f|^p W \leq C \int |f|^p W
\]

whenever \(W \in A_{p/2}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) \); and ii) for \(1 < p < 2 \),

\[
\int |T_m f|^p W \leq C \int |f|^p W
\]

whenever \(W^{1/p} \in A_{p/p}^{1/p}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) \).

Remark. The weighted norm inequality for \(p = 2 \) can be obtained by using the interpolation theorem.

Proof. From Theorem A, we need to show that the sharp operator \(T^# f = M_s(f^2)^{1/2} \). Then (i) of our Theorem follows from Theorem A.

Let us take a smooth function \(\phi \) on \(\mathbb{R} \) whose Fourier transform \(\hat{\phi}(t) \) has compact support \(\{ 1/2 < |t| < 2 \} \) such that \(\sum \hat{\phi}(2^{-j}|t|) = 1 \) for all \(t \neq 0 \). Let

\[
m_{i,j}(\xi_1, \xi_2) = m(\xi_1, \xi_2) \hat{\phi}(2^{-j}|\xi_1|) \hat{\phi}(2^{-j}|\xi_2|)
\]

and

\[
\tilde{T}_{i,j} f(\xi_1, \xi_2) = m_{i,j}(\xi_1, \xi_2) \tilde{f}(\xi_1, \xi_2) \equiv (\hat{k}_{i,j} * f)(\xi_1, \xi_2).
\]

It is clear that \(T f = \sum_{i,j} T_{i,j} f \).

To prove \(T^# f(x) = (M_s f^2(x))^{1/2} \), one needs to estimate, for every rectangle \(R \),

(3)

\[
osc_R(T f)(x) \leq C \gamma^{-\delta} (M_s f^2(x))^{1/2}
\]

for every \(x \in R \) where \(f \) is supported outside of the \(\gamma \)-fold dilation of the rectangle \(R, \gamma \geq 2 \), i.e. \(\text{supp} \ f \subset \overset{\circ}{{\gamma R}} \). By the homogeneity of multiplier operators, it suffices to assume \(R \) is the unit square. Since the estimates are translation invariant, we may assume the center of \(R \) is at the origin. Let us write a function \(f \), \(\text{supp} \ f \subset \overset{\circ}{{\gamma R}} \), as the sum of the functions \(g + h + G \) where

- support of \(g \subset \overset{\circ}{{\gamma^2 R}} \equiv \{ |y_1| > \gamma, |y_2| \leq \gamma \};
- support of \(h \subset \overset{\circ}{{\gamma^2 R}} \equiv \{ |y_1| > \gamma, |y_2| > \gamma \};
- support of \(G \subset \overset{\circ}{{\gamma^2 R}} \equiv \{ |y_1| \leq \gamma, |y_2| > \gamma \}.\)
We will estimate that the first two terms are dominated by \(\gamma \) since \(\int osc_{i,j} = \sum_{i,j} \int R_{i,j} \leq \sum_{i,j} \int R_{i,j} \).

Without loss of generality it suffices to show (3) for a function \(f = g + h \) where

\[
\text{supp } g \subset \hat{c}R_1 \subset \{ |y_1| > \gamma, |y_2| \leq 2 \};
\]

\[
\text{supp } h \subset \hat{c}R_2 \subset \{ |y_1| > \gamma, |y_2| > 2 \}.
\]

We are going to estimate

\[
osc_R(Tg)(x) \leq C \gamma^{-\sigma}(M_g g^2(x))^{1/2} \quad \text{and} \quad osc_R(Th)(x) \leq C \gamma^{-\sigma}(M_h h^2(x))^{1/2},
\]

since \(osc_Tf \leq osc_R Tg + osc_R Th \). Let us write

\[
osc_R(Tf) \leq \sum_{i \geq 0} osc_R(\sum_j T_{i,j} g) + \sum_{i < 0} osc_R(\sum_j T_{i,j} g)
\]

\[
+ \sum_{i \geq 0} \sum_{j \geq 0} osc_R T_{i,j} h + \sum_{i \geq 0} \sum_{j \leq 0} osc_R T_{i,j} h
\]

\[
+ \sum_{i < 0} \sum_{j \geq 0} osc_R T_{i,j} h + \sum_{i < 0} \sum_{j < 0} osc_R T_{i,j} h
\]

\[
\equiv I + II + III + IV + V + VI.
\]

We will estimate that the first two terms are dominated by \(\gamma^{-\sigma}(M_g g^2(x))^{1/2} \) and the last four terms are dominated by \(\gamma^{-\sigma}(M_h h^2(x))^{1/2} \) for every \(x \in R \). Denote \(\sum_i T_{i,j} g = T_ig \) and write

\[
I = \sum_{i \geq 0} osc_R(T_ig)
\]

\[
\leq \sum_{i \geq 0} \left(\frac{1}{|R|} \int_R \left| T_ig(x_1, x_2) \right|^2 dx_1 dx_2 \right)^{1/2}
\]

\[
= \sum_{i \geq 0} \left(\int |x_1| \leq 1 \int |x_2| \leq 1 \int |y_2| < 2 \int |y_1| > \gamma K_i(x_1 - y_1, x_2 - y_2) g(y_1, y_2)
\]

\[
\cdot dy_1 dy_2^2 dx_2 dx_1 \right)^{1/2}
\]

\[
\leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} \left(\int |x_1| \leq 1 \int |x_2| \leq 1 \int |y_2| < 2 \int |y_1| = 2^{k_1}
\]

\[
\cdot K_i(x_1 - y_1, x_2 - y_2) g(y_1, y_2) dy_1 dy_2 dy_1^2 dx_2 dx_1 \right)^{1/2}.
\]

Since

\[
\int |y_1| = 2^{k_1}, \int |y_2| < 2 K_i(x_1 - y_1, x_2 - y_2) g(y_1, y_2) dy_2 dy_1
\]

is a convolution operator in the variable \(y_2 \), applying Plancherel’s Theorem for the variable \(x_2 \) on (4), one has

\[
I \leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} \left(\int |x_1| \leq 1 \int |\xi_2| \int |y_1| = 2^{k_1} \tilde{K}_i^2(x_1 - y_1, \xi_2) \tilde{g}^2(y_1, \xi_2) dy_1 |d\xi_2| dx_1 \right)^{1/2}
\]
where \(\wedge \) denotes the Fourier transform on the second variable. For \(|x_1| \leq 1, |y_1| \geq \gamma, \gamma \geq 2, |y_1| \approx 2^{k_1} \) then \(|x_1 - y_1| \approx 2^{k_1} \). Hence

\[
I \leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} 2^{-k_1 |p_1|} \left(\int_{|x_1| \leq 1} \int_{|\xi_2| = 2^{k_1}} |x_1 - y_1|^{p_1} \hat{K}_i^2(x_1 - y_1, \xi_2) \cdot \hat{g}^2(y_1, \xi_2) dy_1 d\xi_2 d\xi_1 \right)^{1/2}.
\]

By Hölder’s inequality and changing variable \(y_1 \),

\[
I \leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} 2^{-k_1 |p_1|} \left(\left(\sup_{\xi_2} \int \left| \int_{|y_1| \approx 2^{k_1}} \hat{g}^2(y_1, \xi_2) dy_1 d\xi_2 \right|^{1/2} \right)^{1/2} \right)
\]

\[
\leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} 2^{k_1(-p_1 + n_1/2)} \left(\left(\sup_{\xi_2} \sum_{|\alpha_1| = p_1} \int |\partial_{\xi_1}^{\alpha_1} m_1(\xi_1, \xi_2)|^2 d\xi_1 \right)^{1/2} \right)
\]

\[
\leq \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{1}{2^{k_1 n_1}} \right) \left(\int_{|y_2| \leq 2} \int_{|y_1| \approx 2^{k_1}} |g(y_1, y_2)|^2 dy_1 dy_2 \right)^{1/2}
\]

where the last inequality is obtained by applying Plancherel’s Theorem to both integrals and the support of \(g \) is contained by \(\{|y_1| > \gamma, |y_2| \leq 2\} \). Hence, by the hypothesis (2) and \(-p_1 + n_1/2 < 0\),

\[
I \leq C \sum_{i \geq 0} \gamma^{-\sigma} (M_s g^2(0))^{1/2} 2^{i(-p_1 + n_1/2)} \leq C \gamma^{-\sigma} (M_s g^2(0))^{1/2}.
\]

For estimating \(II \), we write

\[
II = \sum_{i \geq 0} oscR(\sum_j T_{i,j} g) = \sum_{i < 0} oscR(T_i g)
\]

\[
\leq \sum_{i < 0} \left(\frac{1}{|R|} \int_R |T_i g(x_1, x_2) - T_i g(0, x_2)|^2 dx_1 dx_2 \right)^{1/2}
\]

\[
= C \sum_{i < 0} \left(\int_R \int_{-R_1} (K_i(x_1 - y_1, x_2 - y_2) - K_i(0 - y_1, x_2 - y_2)) \cdot g(y_1, y_2) dy_1 dy_2 |^2 dx_2 dx_1 \right)^{1/2}
\]

\[
\leq C \sum_{i \geq 0} \sum_{2^{k_1} \geq \gamma/2} \left(\int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \leq 2} (K_i(x_1 - y_1, x_2 - y_2) - K_i(0 - y_1, x_2 - y_2)) \cdot g(y_1, y_2) dy_1 dy_2 |^2 dx_2 dx_1 \right)^{1/2}.
\]
Here, we follow the same procedures as we did in proving I, applying Plancherel’s Theorem for the variable x_2.

$$ II \leq C \sum_{i < 0} \sum_{2^k \geq \gamma/2} \left(\int_{|x_1| \leq 1} \int_{|y_1| \geq 2^k} \left(\hat{K}_i^2(x_1 - y_1, \xi_2) - \hat{K}_i^2(0 - y_1, \xi_2) \right) \cdot \hat{g}^2(y_1, \xi_2) dy_1 ||^2 d\xi_2 dx_1 \right)^{1/2} $$

$$ = C \sum_{i < 0} \sum_{2^k \geq \gamma/2} \left(\int_{|x_1| \leq 1} \int_{|y_1| \geq 2^k} \int_0^1 x_1 \partial_{y_1} \hat{K}_i^2(x_1 s_1 - y_1, \xi_2) \cdot \hat{g}^2(y_1, \xi_2) ds_1 dy_1 ||^2 d\xi_2 dx_1 \right)^{1/2} $$

$$ \leq C \sum_{i < 0} \sum_{2^k \geq \gamma/2} \left(\int_0^1 \int_{|x_1| \leq 1} \int_{|y_1| \geq 2^k} \left| \partial_{y_1} \hat{K}_i^2(x_1 s_1 - y_1, \xi_2) \right|^2 dy_1 \right) \cdot \left(\int_{|y_1| \geq 2^k} \left| \hat{g}^2(y_1, \xi_2) \right|^2 d\xi_2 dx_1 \right)^{1/2} $$

$$ \leq C \sum_{i < 0} \sum_{2^k \geq \gamma/2} 2^{k_i(-p_1 + \epsilon_1 + n_1/2)} \left[\int_0^1 \int_{|x_1| \leq 1} \int_{|y_1| \geq 2^k} \sup_{\xi_2} \left| x_1 s_1 - y_1 \right|^{p_1 - \epsilon_1} \left| \partial_{y_1} \hat{K}_i^2(x_1 s_1 - y_1, \xi_2) \right|^2 dy_1 \right] \cdot \left(\int_{|y_1| \geq 2^k} \left| \hat{g}^2(y_1, \xi_2) \right|^2 d\xi_2 dx_1 \right)^{1/2} \cdot \left(\frac{1}{2^{k_1 n_1}} \int \int_{|y_1| \geq 2^k} \left| \hat{g}^2(y_1, \xi_2) \right|^2 d\xi_2 dx_1 \right)^{1/2}. $$

Taking a very small $\epsilon_1 > 0$ such that $-p_1 + \epsilon_1 + n_1/2 < 0$, changing variable (i.e. $x_1 s_1 - y_1 \rightarrow y_1$) in the integral in the first parentheses and applying Plancherel’s Theorem for the integral in the second parentheses, one has

$$ II \leq C \gamma^{-\sigma} \sum_{i < 0} \sup_{\xi_2} \left(\int \left| y_1 \right|^{-\epsilon_1} \left| y_1 \right|^{p_1} \left| \partial_{y_1} \hat{K}_i^2(y_1, \xi_2) \right|^2 dy_1 \right)^{1/2} \left(M_\gamma g^2(0) \right)^{1/2} $$

$$ \leq C \gamma^{-\sigma} \left(M_\gamma g^2(0) \right)^{1/2} \sum_{i < 0} \sup_{\xi_2} \sum_{|\alpha_1| = p_1} \left(\int \left| \xi_1 \right|^{-n_1 + \epsilon_1} \left| \partial_{\xi_1}^\alpha \left(\xi_1 m_i(\xi_1, \xi_2) \right) \right|^2 d\xi_1 \right)^{1/2} $$

for some $\sigma > 0$, where $*^1$ is the convolution operator on the first variable. By fractional integration,

$$ II \leq C \gamma^{-\sigma} \left(M_\gamma g^2(0) \right)^{1/2} \sum_{i < 0} \sum_{|\alpha_1| = p_1} \sup_{\xi_2} \left(\int \left| \partial_{\xi_1}^\alpha \left(\xi_1 m_i(\xi_1, \xi_2) \right) \right|^q d\xi_1 \right)^{1/q} $$
where $1/q = 1/2 + \epsilon_1/n_1$ (clearly $q < 2$). By Hölder's inequality,

$$II \leq C\gamma^{-\sigma}(M_s g^2(0))^{1/2} \sum_{i < 0} \sum_{|\alpha_1| = p_1} 2^{in_1(1/q - 1/2)} \sup_{\xi_2} \left(\int |\partial_{\xi_1}^{\alpha_1} (\xi_1 m_1(\xi_1, \xi_2))|^2 d\xi_1 \right)^{1/2}$$

$$\leq C\gamma^{-\sigma}(M_s g^2(0))^{1/2} \sum_{i < 0} 2^{i(-p_1 + 1 + n_1/q)}$$

$$\leq C\gamma^{-\sigma}(M_s g^2(0))^{1/2}$$

(since $\epsilon_1 > 0$ then $-p_1 + 1 + n_1/q > 0$).

For estimating III, we write

$$|T_{i,j}h(x_1, x_2)|$$

$$\leq \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |K_{i,j}(x_1 - y_1, x_2 - y_2) h(y_1, y_2)| dy_1 dy_2$$

$$\leq \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{1}{2^{k_1} 2^{k_2}} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |h|^2 dy_1 dy_2 \right)^{1/2}$$

$$\leq C(M_s h^2(0))^{1/2} \sum_{k_2 \geq 1} 2^{k_1(-p_1 + n_1/2)} 2^{k_2(-p_2 + n_2/2)}$$

$$\cdot \left(\int \int |x_1 - y_1|^{p_1} |x_2 - y_2|^{p_2} K_{i,j}(x_1 - y_1, x_2 - y_2)^2 dy_1 dy_2 \right)^{1/2} .$$

As before, applying a change of variable and Plancherel's Theorem,

$$|T_{i,j}h(x_1, x_2)|$$

$$\leq C\gamma^{-\sigma}(M_s h^2(0))^{1/2} \sum_{|\alpha_2| = p_1} \sum_{|\alpha_2| = p_2} \left(\int \int |\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} m_{i,j}(\xi_1, \xi_2)|^2 d\xi_1 d\xi_2 \right)^{1/2}$$

$$\leq C\gamma^{-\sigma}(M_s h^2(0))^{1/2} 2^{i(-p_1 + n_1/2)} 2^{j(-p_2 + n_2/2)}.$$
Since the estimates for IV and V are similar, we estimate only term V. First let us write

\[|T_{i,j}h(x_1, x_2) - T_{i,j}h(0, x_2)| \]

\[\leq \sum_{k_2 \geq 1} \sum_{2^k_1 \geq \gamma/2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |K_{i,j}(x_1 - y_1, x_2 - y_2) - K_{i,j}(0 - y_1, x_2 - y_2)| \]

\[\cdot |h(y_1, y_2)| dy_1 dy_2 \]

\[\leq \sum_{k_2 \geq 1} \sum_{2^k_1 \geq \gamma/2} 2^{k_1 \alpha_1/2} 2^{k_2 \alpha_2/2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |K_{i,j}(x_1 - y_1, x_2 - y_2) - K_{i,j}(0 - y_1, x_2 - y_2)|^2 dy_1 dy_2 \]

\[\leq \sum_{k_2 \geq 1} \sum_{2^k_1 \geq \gamma/2} 2^{k_1 \alpha_1/2} 2^{k_2 \alpha_2/2} (M_s h^2(0))^{1/2} \left(\int_0^1 \int \int |\partial_{y_1} K_{i,j}(x_1 s_1 - y_1, x_2 - y_2)|^2 dy_1 dy_2 ds \right)^{1/2} \]

\[\approx \sum_{k_2 \geq 1} \sum_{2^k_1 \geq \gamma/2} 2^{k_1(-p_1 + \epsilon_1 + n_1/2)} 2^{k_2(-p_2 + n_2/2)} (M_s h^2(0))^{1/2} \left(\int_0^1 \int \int \right. \]

\[\left. \cdot |x_1 s_1 - y_1|^{p_2 \alpha_2} |x_2 - y_2|^{p_2} \partial_{y_1} K_{i,j}(x_1 s_1 - y_1, x_2 - y_2)|^2 dy_1 dy_2 ds \right)^{1/2} \]

Taking a positive small \(\epsilon_1 \), changing variables, applying Plancherel’s Theorem and fractional integration, we get

\[|T_{i,j}h(x_1, x_2) - T_{i,j}h(0, x_2)| \]

\[\leq C \gamma^{-\sigma} (M_s h^2(0))^{1/2} \]

\[\cdot \sum_{|\alpha_1| = p_1, |\alpha_2| = p_2} \left(\int \int \|\xi_1|^{-n_1 + \epsilon_1} \partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} (\xi_1 m_{i,j}(\xi_1, \xi_2))|^2 d\xi_1 d\xi_2 \right)^{1/2} \]

\[\leq C \gamma^{-\sigma} (M_s h^2(0))^{1/2} \]

\[\cdot \sum_{|\alpha_1| = p_1, |\alpha_2| = p_2} \left(\int \left(\int |\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} (\xi_1 m_{i,j}(\xi_1, \xi_2))|^q d\xi_1 \right)^{2/q} d\xi_2 \right)^{1/2} \]

where \(1/q = 1/2 + \epsilon_1/n_1 \). By Hölder’s inequality and the hypothesis (2),

\[|T_{i,j}h(x_1, x_2) - T_{i,j}h(0, x_2)| \]

\[\leq C \gamma^{-\sigma} (M_s h^2(0))^{1/2} 2^{n_1(1/q - 1/2)} \left(\int \int |\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} (\xi_1 m_{i,j}(\xi_1, \xi_2))|^2 d\xi_1 d\xi_2 \right)^{1/2} \]

\[\leq C \gamma^{-\sigma} (M_s h^2(0))^{1/2} 2^{(n_1/n_1 - 1/2)} (-p_1 + n_1/2)_2^{(-p_2 + n_2/2)} \cdot \]

Since \(-p_1 + n_1/q > 0\) for positive small \(\epsilon_1 \) and \(-p_2 + n_2/2 < 0\), we have

\[V = \sum_{i < 0} \sum_{j \geq 0} \operatorname{osc}_R T_{i,j} h \leq C \gamma^{-\sigma} (M_s h^2(0))^{1/2}. \]
By the Taylor formula and Hölder’s inequality,

\[
|T_{i,j}h(x_1, x_2) - T_{i,j}h(0, x_2) - T_{i,j}h(x_1, 0) + T_{i,j}h(0, 0)| \\
\leq \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{2^{k_1} \alpha_{k_2}}{2^{k_1} \alpha_{k_2} n_2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} (K_{i,j}(x_1 - y_1, x_2 - y_2) - K_{i,j}(-y_1, x_2 - y_2) - K_{i,j}(x_2 - y_1, -y_2) + K_{i,j}(-y_1, -y_2))h(y_1, y_2)d_1 dy_2 \right)^{1/2} \\
\leq \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{2^{k_1} \alpha_{k_2}}{2^{k_1} \alpha_{k_2} n_2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |K_{i,j}(x_1 - y_1, x_2 - y_2) - K_{i,j}(-y_1, x_2 - y_2) - K_{i,j}(x_2 - y_1, -y_2) + K_{i,j}(-y_1, -y_2)|^2 d_1 dy_2 \right)^{1/2} \\
\cdot \left(\int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |h|^2 d_1 dy_2 \right)^{1/2}.
\]

By the Taylor formula and Hölder’s inequality,

\[
|T_{i,j}h(x_1, x_2) - T_{i,j}h(0, x_2) - T_{i,j}h(x_1, 0) + T_{i,j}h(0, 0)| \\
\leq \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{2^{k_1} \alpha_{k_2}}{2^{k_1} \alpha_{k_2} n_2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} |\partial_{y_1} \partial_{y_2} K_{i,j}(x_1 s_1 - y_1, x_2 s_2 - y_2)|^2 d_1 dy_2 ds_1 ds_2 \right)^{1/2} \\
\approx C(M_h^2(0))^{1/2} \sum_{k_2 \geq 1} \sum_{2^{k_1} \geq \gamma/2} \left(\frac{2^{k_1} \alpha_{k_2}}{2^{k_1} \alpha_{k_2} n_2} \int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} ||x_1 s_1 - y_1|^{p_1 - \epsilon_1} |x_2 s_2 - y_2|^{p_2 - \epsilon_2} \right)^{1/2} \\
\cdot \left(\int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} ||x_1 s_1 - y_1|^{p_1 - \epsilon_1} |x_2 s_2 - y_2|^{p_2 - \epsilon_2} \right)^{1/2} \\
\cdot \left(\int_{|y_1| \approx 2^{k_1}} \int_{|y_2| \approx 2^{k_2}} \partial_{y_1} \partial_{y_2} K_{i,j}(x_1 s_1 - y_1, x_2 s_2 - y_2)|^2 d_1 dy_2 ds_1 ds_2 \right)^{1/2} \\
\leq C \gamma^{-\sigma} (M_h^2(0))^{1/2} \int \int ||y_1|^{-\epsilon_1} |y_2|^{-\epsilon_2} |y_1|^{p_1} |y_2|^{p_2} \\
\cdot \partial_{y_1} \partial_{y_2} K_{i,j}(y_1, y_2)|^2 d_1 dy_2 \right)^{1/2} \\
\leq C \gamma^{-\sigma} (M_h^2(0))^{1/2} \sum_{|\alpha_1| = p_1, |\alpha_2| = p_2} \left(\int ||\xi_1|^{-n_1 + \epsilon_1} |\xi_2|^{-n_2 + \epsilon_2} \\
\cdot \partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} (\xi_1 \xi_2 m_{i,j}(\xi_1, \xi_2))|^2 d\xi_1 d\xi_2 \right)^{1/2}).
\]
Next, we use fractional integration twice on the variables ξ_1 and ξ_2 respectively. Let $1/q_1 = 1/2 + \epsilon_1/n_1$ and $1/q_2 = 1/2 + \epsilon_2/n_2$. Then

$$|T_{i,j}h(x_1,x_2) - T_{i,j}h(0,x_2) - T_{i,j}h(x_1,0) - T_{i,j}h(0,0)| \leq C\gamma^{-\sigma}(M_s h^2(0))^{1/2} \sum_{|\alpha_1|=p_1} \sum_{|\alpha_2|=p_2} \left(\int \left(\int \|\xi_2\|^{-n_2+\epsilon_2} \right) \right)^{q_1/2} \frac{C_{\gamma}}{q_1} \left(\int \frac{\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2}(\xi_1 \xi_2 m_{i,j}(\xi_1,\xi_2))^2}{\xi_2^2} d\xi_2 \right)^{1/2}$$

where s^2 denotes the convolution operator on the second variable. By Minkowski’s inequality, the last inequality is less than

$$C\gamma^{-\sigma}(M_s h^2(0))^{1/2} \sum_{|\alpha_1|=p_1} \sum_{|\alpha_2|=p_2} \left(\int \left(\int \|\xi_2\|^{-n_2+\epsilon_2} \right) \right)^{q_1/2} \frac{C_{\gamma}}{q_1} \left(\int \frac{\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2}(\xi_1 \xi_2 m_{i,j}(\xi_1,\xi_2))^2}{\xi_2^2} d\xi_2 \right)^{1/2}$$

Hence

$$VI \leq \sum_{i<0} \sum_{j<0} \text{osc}_R T_{i,j}h \leq C\gamma^{-\sigma}(M_s h^2(0))^{1/2}.$$

Combining the above estimates, we conclude that

$$T^# f(x_1,x_2) = (M_s f^2(x))^1/2.$$

(i) is proved.

For the proof of (ii), we use duality. Let $U = W^{-1/(p-1)}$. Then the dual space of $L_{W}^p(R^{n_1} \times R^{n_2})$ is $L_U^p(R^{n_1} \times R^{n_2})$. There exists a function $g \in L_U^p(R^{n_1} \times R^{n_2})$ such that

$$\|T_m f\|_{L_W^p} = \int T_m f \tilde{g} = \int f \tilde{T_m g} \leq \|f\|_{L_W^p} \|T_m g\|_{L_U^p}.$$
It is easy to see that
\[W^{2/(2-p)} \in A_{p/(2-p)} \iff U \in A_{p'/2}. \]
Applying (i),
\[\|T_m g\|_{L^p_U} \leq C\|g\|_{L^p_U} \]
where \(U \in A_{p'/2} \). The Theorem is proved.

References

1. L. Carleson, A counterexample for measures bounded for \(H^p \) for the \(B \)-disc, Mittag Leffler report, No. 7, 1974.