Stable periodic projective planes
HTML articles powered by AMS MathViewer
- by Manuel Ritoré
- Proc. Amer. Math. Soc. 124 (1996), 3851-3856
- DOI: https://doi.org/10.1090/S0002-9939-96-03681-7
- PDF | Request permission
Abstract:
We find all stable projective planes with finite topology which are properly embedded in $\Bbb R^3/\varGamma$, where $\varGamma$ is a discrete subgroup of translations in $\Bbb R^3$. Here stable means second order minimum of the area. The surfaces we obtain are a quotient of the helicoid and quotients of the doubly periodic Scherk surfaces.References
- Jaigyoung Choe, Index, vision number and stability of complete minimal surfaces, Arch. Rational Mech. Anal. 109 (1990), no. 3, 195–212. MR 1025170, DOI 10.1007/BF00375088
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373–377. MR 1062966, DOI 10.1007/BF01231506
- I.C. Lima, A.M. da Silveira, Stability of complete nonorientable minimal surfaces in $\mathbb {R}^3$, preprint.
- Francisco J. López and Antonio Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989), no. 1, 34–43. MR 982560, DOI 10.1007/BF02564662
- William H. Meeks III, The classification of complete minimal surfaces in $\textbf {R}^{3}$ with total curvature greater than $-8\pi$, Duke Math. J. 48 (1981), no. 3, 523–535. MR 630583
- William H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936. MR 1078743, DOI 10.1512/iumj.1990.39.39043
- William H. Meeks III and Harold Rosenberg, The global theory of doubly periodic minimal surfaces, Invent. Math. 97 (1989), no. 2, 351–379. MR 1001845, DOI 10.1007/BF01389046
- William H. Meeks III and Harold Rosenberg, The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), no. 4, 538–578. MR 1241472, DOI 10.1007/BF02565835
- Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174. MR 1178529, DOI 10.1007/BFb0083639
- Joaquín Pérez and Antonio Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513–525. MR 1204835, DOI 10.1007/BF01444900
- Marty Ross, Complete nonorientable minimal surfaces in $\mathbf R^3$, Comment. Math. Helv. 67 (1992), no. 1, 64–76. MR 1144614, DOI 10.1007/BF02566489
- Éric Toubiana, Un théorème d’unicité de l’hélicoïde, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 121–132 (French, with English summary). MR 978243, DOI 10.5802/aif.1151
Bibliographic Information
- Manuel Ritoré
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, E–18071, Granada, Spain
- Email: ritore@goliat.ugr.es
- Received by editor(s): June 12, 1995
- Additional Notes: Research partially supported by DGICYT grant PB94–0796
- Communicated by: Peter Li
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3851-3856
- MSC (1991): Primary 53A10; Secondary 49Q20
- DOI: https://doi.org/10.1090/S0002-9939-96-03681-7
- MathSciNet review: 1363182