Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes
HTML articles powered by AMS MathViewer
- by Ludwig Baringhaus
- Proc. Amer. Math. Soc. 124 (1996), 3875-3884
- DOI: https://doi.org/10.1090/S0002-9939-96-03691-X
- PDF | Request permission
Abstract:
We study the distributions of integrals of Gaussian processes arising as limiting distributions of test statistics proposed for treating a goodness of fit or symmetry problem. We show that the cumulants of the distributions can be expressed in terms of Fibonacci numbers and Lucas numbers.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Aloisio Araujo and Evarist Giné, The central limit theorem for real and Banach valued random variables, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 576407
- L. Baringhaus and N. Henze, A consistent test for multivariate normality based on the empirical characteristic function, Metrika 35 (1988), no. 6, 339–348. MR 980849, DOI 10.1007/BF02613322
- Sándor Csörgő, Multivariate empirical characteristic functions, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 2, 203–229. MR 608017, DOI 10.1007/BF00535160
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Andrey Feuerverger and Roman A. Mureika, The empirical characteristic function and its applications, Ann. Statist. 5 (1977), no. 1, 88–97. MR 428584
- H.-D. Keller, Einige Untersuchungen zur empirischen charakteristischen Funtion und deren Anwendungen, Dissertation, Dortmund, 1979.
- S. Vajda, Fibonacci & Lucas numbers, and the golden section, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989. Theory and applications; With chapter XII by B. W. Conolly. MR 1015938
- Ward Whitt, Weak convergence of probability measures on the function space $C[0,\,\infty )$, Ann. Math. Statist. 41 (1970), 939–944. MR 261646, DOI 10.1214/aoms/1177696970
Bibliographic Information
- Ludwig Baringhaus
- Affiliation: Institut für Mathematische Stochastik, Universität Hannover, D-30167 Hannover, Germany
- Email: baringhaus@mbox.stochastik.uni-hannover.de
- Received by editor(s): May 15, 1995
- Communicated by: Wei-Yin Loh
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3875-3884
- MSC (1991): Primary 60E05; Secondary 11B35
- DOI: https://doi.org/10.1090/S0002-9939-96-03691-X
- MathSciNet review: 1363410