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ON SUMS AND PRODUCTS OF INTEGERS

MELVYN B. NATHANSON

(Communicated by William W. Adams)

Abstract. Erdős and Szemerédi conjectured that if A is a set of k positive
integers, then there must be at least k2−ε integers that can be written as the
sum or product of two elements of A. Erdős and Szemerédi proved that this
number must be at least ck1+δ for some δ > 0 and k ≥ k0. In this paper it is
proved that the result holds for δ = 1/31.

1. A conjecture of Erdős and Szemerédi

Let h ≥ 2, and let A1, . . . , Ah be finite sets of positive integers. We consider the
sumset

A1 + · · ·+Ah = {a1 + · · ·+ ah
∣∣ ai ∈ Ai for i = 1, . . . , h}

and the product set

A1 · · ·Ah = {a1 · · · ah
∣∣ ai ∈ Ai for i = 1, . . . , h}.

If Ai = A for all i, we let

hA = {a1 + · · ·+ ah
∣∣ ai ∈ A for i = 1, . . . , h}

denote the h-fold sumset of A, and we let

Ah = {a1 · · · ah
∣∣ ai ∈ A for i = 1, . . . , h}

denote the h-fold product set of A. We let

Eh(A) = hA ∪Ah

denote the set of all integers that can be written as the sum or product of h elements
of A.

Clearly, if |A| = k, then

|hA| ≤
(
k + h− 1

h

)
and

|Ah| ≤
(
k + h− 1

h

)
,
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10 MELVYN B. NATHANSON

and so the number of sums and products of h elements of A is

|Eh(A)| ≤ 2

(
k + h− 1

h

)
=

2kh

h!
+O(kh−1).

Erdős and Szemerédi [1, 3] have made the beautiful conjecture that a finite set
of positive integers cannot have simultaneously few sums and few products. More
precisely, they conjectured that for every ε > 0 there exists an integer k0(ε) such
that, if A is a finite set of positive integers and

|A| = k ≥ k0(ε),

then

|Eh(A)| � kh−ε.

Nothing is known about this conjecture for h ≥ 3.
For h = 2, Nathanson and Tenenbaum [4] have proved that if |A| = k and

|2A| ≤ 3k − 4, then

|A2| � k2−ε.

This is the only case in which the full conjecture has been proven.
For an arbitrary set of k positive integers, Erdős and Szemerédi [3] have shown

that there exists a real number δ > 0 such that

|E2(A)| � k1+δ.

Erdős [2] recently observed that “our paper with Szemerédi has nearly been forgot-
ten.” The purpose of this paper is to give a careful version of the Erdős-Szemerédi
proof that allows the explicit calculation of an exponent δ.

Notation. For any set A of integers, let |A| denote the cardinality of the set A,
let max(A) denote the largest element of A, and let min(A) denote the smallest
element of A. For x ∈ R, let [x] denote the largest integer not exceeding x. Note
that [x] > x/2 if x ≥ 2. Let [x1, x2) = {n ∈ Z

∣∣ x1 ≤ n < x2}.

2. Sets of small diameter

In this section we obtain a result in the special case of sets of small diameter,
and in the next section we show that the main theorem reduces to this special case.

Lemma 1. Let B be a nonempty, finite set of positive integers such that

max(B) ≤ 2 min(B).

Then

|E2(B)| ≥
(
|B|
384

)16/15

.

Proof. Let |B| = k. If k < 384, the inequality is trivial, so we can assume that

k ≥ 384 = 2512.

Then

(k/12)1/5 ≥ 2.

Let

l =

[(
k

12

)1/5
]
.
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Then

l ≥ 1

2

(
k

12

)1/5

=

(
k

384

)1/5

.

Since

k ≥ 12l5,

it follows that [
k

l

]
≥ 12l4.(1)

Let B = {b1, . . . , bk}, where

1 ≤ b1 < b2 < · · · < bk ≤ 2b1.

For i = 1, 2, . . . , [k/l], let

Bi = {b(i−1)l+1, b(i−1)l+2, . . . , bil} ⊆ B
and

di = bil − b(i−1)l+1.

Choose i0 so that

di0 = min{di
∣∣ i = 1, . . . , [k/l]},

and let

B∗ = Bi0
and

d∗ = di0 .

Suppose that

1 ≤ i < j ≤
[
k

l

]
and j − i ≥ 3.

If

b∗1, b
∗
2 ∈ B∗ and b′i ∈ Bi, b′j ∈ Bj ,

then

x∗ = b∗2 − b∗1 ≤ d∗

and

x = b′j − b′i > di+1 + di+2 · · ·+ dj−1 ≥ 2d∗ > 0.

It follows that

b∗1 + b′j 6= b∗2 + b′i.

Suppose that

b∗1b
′
j = b∗2b

′
i.

Since b′i < b′j , it follows that b∗2 > b∗1 and so x∗ > 0. Since

b′j ≤ bk ≤ 2b1 ≤ 2b∗1,

it follows that

b∗1b
′
j = b∗2b

′
i = (b∗1 + x∗)(b′j − x) = b∗1b

′
j + x∗b′j − xb∗1 − x∗x,

and so

0 < x∗x = x∗b′j − xb∗1 ≤ b∗1(2x∗ − x) ≤ b∗1(2d∗ − x) < 0,

which is absurd. Therefore,

b∗1b
′
j 6= b∗2b

′
i.
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It follows that

(B∗ +Bj) ∩ (B∗ +Bi) = ∅(2)

and

(B∗ ·Bj) ∩ (B∗ ·Bi) = ∅(3)

for every pair i, j of integers such that j − i ≥ 3.
We shall consider only the sets B1, B4, B7, . . . , that is, the sets Bi such that

i ≡ 1 (mod 3). There are at least

1

3

[
k

l

]
such sets. Let

0 < θ < 1

and
β = θ/3 < 1/3.

Let
E(B∗, Bi) = (B∗ +Bi) ∪ (B∗ ·Bi),

and let
I1 = {i ≡ 1 (mod 3)

∣∣ |E(B∗, Bi)| < l1+β}
and

I2 = {i ≡ 1 (mod 3)
∣∣ |E(B∗, Bi)| ≥ l1+β}.

Then

|I1|+ |I2| ≥
1

3

[
k

l

]
.(4)

Suppose that

|I1| ≥
1

6

[
k

l

]
.

Let i ∈ I1. For m ∈ B∗ ·Bi, let ρ(m) denote the number of representations of m in
the form b∗b′i, where b∗ ∈ B∗ and b′i ∈ Bi. Choose m′ such that

ρ(m′) = max{ρ(m)
∣∣ m ∈ B∗ ·Bi}.

Since |B∗| = |Bi| = l, it follows that

l2 =
∑

m∈B∗·Bi

ρ(m) ≤ ρ(m′)|B∗ ·Bi| < ρ(m′)l1+β ,

and so
ρ(m′) > l1−β.

For j = 1, . . . , ρ(m′), choose b∗j ∈ B∗ and b′j ∈ Bi such that

b∗jb
′
j = m′(5)

and b∗j1 6= b∗j2 for j1 6= j2. There are ρ(m′)2 expressions of the form

b∗j + b′j′ ∈ B∗ +Bi,

where j, j′ = 1, . . . , ρ(m′). Since i ∈ I1 and β < 1/3, it follows that

ρ(m′)2 > l2−2β > l1+β > |B∗ +B′i|,
and so there exist b∗j1 , b

∗
j2 ∈ B∗ and b′j3 , b

′
j4 ∈ Bi such that b∗j1 6= b∗j2 and

b∗j1 + b′j3 = b∗j2 + b′j4 .(6)
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It follows from (5) that also

b∗j3b
′
j3 = b∗j4b

′
j4 .(7)

What we have just shown is that for every i ∈ I1 there exist four positive integers
b∗j1 , b

∗
j2 , b

∗
j3 , b

∗
j4 ∈ B

∗ and two positive integers b′j3 , b
′
j4 ∈ Bi that satisfy equations (6)

and (7). However, given any positive integers b∗j1 , b
∗
j2
, b∗j3 , b

∗
j4

, equations (6) and (7)
have at most one solution in integers b′j3 , b

′
j4 . Since the number of quadruples of

elements of B∗ is exactly l4, it follows from (1) that if |I1| ≥ (1/6)[k/l], then

l4 ≥ |I1| ≥
1

6

[
k

l

]
≥ 2l4,

which is absurd. Therefore,

|I1| <
1

6

[
k

l

]
,

and so, by (4), we have

|I2| ≥
1

6

[
k

l

]
.

Let

n ∈
⋃
i∈I2

E(B∗, Bi).

It follows from (2) and (3) that n belongs to at most two of the sets E(B∗, Bi).
Therefore,

|E2(B)| ≥
∣∣∣∣∣ ⋃
i∈I2

E(B∗, Bi)

∣∣∣∣∣ ≥ (1/2)
∑
i∈I2

|E(B∗, Bi)|

≥ (1/2)|I2|l1+β ≥ (1/12)

[
k

l

]
l1+β ≥ (1/12)(12l4)l1+β

= l5+β ≥
(

k

384

)1+β/5

=

(
k

384

)1+θ/15

.

Since this holds for all θ < 1, we obtain

|E2(B)| ≥
(

k

384

)16/15

.

This completes the proof of the lemma.

3. The main result

Theorem 1. Let A be a nonempty, finite set of positive integers. Then

|E2(A)| ≥ c|A|32/31,

where c = 0.00028 . . . .

Proof. For j = 1, 2, . . . , let

Uj = [2j−1, 2j)

and

Vj = [4j−1, 4j) = U2j−1 ∪ U2j.

Let

Aj = A ∩ Uj = {a ∈ A
∣∣ 2j−1 ≤ a < 2j}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 MELVYN B. NATHANSON

for j = 1, 2, . . . . Then A =
⋃∞
j=1 Aj , the sets Aj are pairwise disjoint, and

∞∑
j=1

|Aj | = k.

Let α > 0, and let

c1 = (384)−16/15

and

c2(α) =
c1

3 · 21+α/15
<
c1
3
<

1

32
.

There are two cases. In the first case, we assume that if Aj 6= ∅, then

|Aj | ≥ kα.
Since max(Aj) ≤ 2 min(Aj), the set Aj satisfies the conditions of the lemma, and
so

|E2(Aj)| ≥ c1|Aj |16/15.

Let

n ∈
∞⋃
j=1

E2(Aj).

There exists a unique integer t such that

n ∈ Vt = U2t−1 ∪ U2t.

Observe that if a, a′ ∈ Aj , then a + a′ ∈ Uj+1 and aa′ ∈ Vj . Suppose that n ∈
E2(Aj). If n is a product of two elements of Aj , then n ∈ Vj and so j = t. If n is a
sum of two elements of Aj , then n ∈ Uj+1, and so j = 2t− 2 or 2t− 1. Therefore,
n belongs to at most three of the sets E2(Aj). It follows that

|E2(A)| ≥

∣∣∣∣∣∣
∞⋃
j=1

E2(Aj)

∣∣∣∣∣∣
≥ (1/3)

∞∑
j=1

|E2(Aj)|

≥ (1/3)
∞∑
j=1

c1|Aj |16/15

= (c1/3)
∞∑
j=1

|Aj | · |Aj |1/15

≥ (c1/3)kα/15
∞∑
j=1

|Aj |

= (c1/3)kα/15k

> c2(α)k1+α/15.

In the second case, there exist sets Aj such that

0 < |Aj | < kα.

Let

J = {j
∣∣ 0 < |Aj | < kα}.
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If ∣∣∣∣∣∣
⋃
j∈J

Aj

∣∣∣∣∣∣ < k/2,

let

A′ = A \

⋃
j∈J

Aj

 ,

and let
A′j = A′ ∩ Uj = {a ∈ A′

∣∣ 2j−1 ≤ a < 2j}.
Then

k/2 < |A′| = k′ ≤ k.
If A′j 6= ∅, then A′j = Aj and

|A′j | = |Aj | ≥ kα ≥ (k′)α.

Therefore, we can apply the previous case to the set A′, and obtain

|E2(A)| ≥ |E2(A′)| ≥ (c1/3)(k′)1+α/15 > c2(α)k1+α/15.

On the other hand, if

k/2 ≤

∣∣∣∣∣∣
⋃
j∈J

Aj

∣∣∣∣∣∣ < |J |kα,
then

|J | > k1−α/2.

Let j1 < j2 < j3 < · · · be the elements of J arranged in increasing order, and
choose

a∗1 ∈ Aj1 , a∗3 ∈ Aj3 , a∗5 ∈ Aj5 , . . . .
Let

A∗ = {a∗ji
∣∣ i = 1, 3, 5, . . .} ⊆ A.

Then
|A∗| ≥ |J |/2 > k1−α/4.

Since a∗i ∈ Aji , it follows that

2a∗i < 2ji+1 ≤ 2ji+1 ≤ 2ji+2−1 ≤ a∗i+2,

and so the sums of distinct pairs of elements of A∗ are distinct. Therefore,

|E2(A)| ≥ |E2(A∗)| ≥ |2A∗| > |A∗|2/2 > k2−2α/32 > c2(α)k2−2α.

Choose
α = 15/31.

Then

2− 2α = 1 +
α

15
,

and we obtain
|E2(A)| ≥ ck32/31,

where

c = c2(15/31) =
1

6 · (384)16/15 · 21/31
= 0.00028 . . . .

This completes the proof of the theorem.
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