ON SUMS AND PRODUCTS OF INTEGERS

MELVYN B. NATHANSON

(Communicated by William W. Adams)

Abstract. Erdős and Szemerédi conjectured that if \(A \) is a set of \(k \) positive integers, then there must be at least \(k^2 - \varepsilon \) integers that can be written as the sum or product of two elements of \(A \). Erdős and Szemerédi proved that this number must be at least \(c_k^{1+\delta} \) for some \(\delta > 0 \) and \(k \geq k_0 \). In this paper it is proved that the result holds for \(\delta = 1/31 \).

1. A conjecture of Erdős and Szemerédi

Let \(h \geq 2 \), and let \(A_1, \ldots, A_h \) be finite sets of positive integers. We consider the sumset
\[
A_1 + \cdots + A_h = \{ a_1 + \cdots + a_h \mid a_i \in A_i \text{ for } i = 1, \ldots, h \}
\]
and the product set
\[
A_1 \cdots A_h = \{ a_1 \cdots a_h \mid a_i \in A_i \text{ for } i = 1, \ldots, h \}.
\]
If \(A_i = A \) for all \(i \), we let
\[
hA = \{ a_1 + \cdots + a_h \mid a_i \in A \text{ for } i = 1, \ldots, h \}
\]
derote the \(h \)-fold sumset of \(A \), and we let
\[
A^h = \{ a_1 \cdots a_h \mid a_i \in A \text{ for } i = 1, \ldots, h \}
\]
derote the \(h \)-fold product set of \(A \). We let
\[
E_h(A) = hA \cup A^h
\]
derote the set of all integers that can be written as the sum or product of \(h \) elements of \(A \).

Clearly, if \(|A| = k \), then
\[
|hA| \leq \binom{k+h-1}{h}
\]
and
\[
|A^h| \leq \binom{k+h-1}{h}.
\]
and so the number of sums and products of \(h \) elements of \(A \) is
\[
|E_h(A)| \leq 2 \binom{k + h - 1}{h} = \frac{2k^h}{h!} + O(k^{h-1}).
\]

Erdős and Szemerédi [1, 3] have made the beautiful conjecture that a finite set of positive integers cannot have simultaneously few sums and few products. More precisely, they conjectured that for every \(\varepsilon > 0 \) there exists an integer \(k_0(\varepsilon) \) such that, if \(A \) is a finite set of positive integers and
\[
|A| = k \geq k_0(\varepsilon),
\]
then
\[
|E_h(A)| \gg k^{h-\varepsilon}.
\]

Nothing is known about this conjecture for \(h \geq 3 \).

For \(h = 2 \), Nathanson and Tenenbaum [4] have proved that if \(|A| = k \) and \(|2A| \leq 3k - 4 \), then
\[
|A^2| \gg k^{2-\varepsilon}.
\]

This is the only case in which the full conjecture has been proven.

For an arbitrary set of \(k \) positive integers, Erdős and Szemerédi [3] have shown that there exists a real number \(\delta > 0 \) such that
\[
|E_2(A)| \gg k^{1+\delta}.
\]

Erdős [2] recently observed that “our paper with Szemerédi has nearly been forgotten.” The purpose of this paper is to give a careful version of the Erdős-Szemerédi proof that allows the explicit calculation of an exponent \(\delta \).

Notation. For any set \(A \) of integers, let \(|A| \) denote the cardinality of the set \(A \), let \(\max(A) \) denote the largest element of \(A \), and let \(\min(A) \) denote the smallest element of \(A \). For \(x \in \mathbb{R} \), let \(\lfloor x \rfloor \) denote the largest integer not exceeding \(x \). Note that \(\lfloor x \rfloor > x/2 \) if \(x \geq 2 \). Let \([x_1, x_2) = \{ n \in \mathbb{Z} \mid x_1 \leq n < x_2 \} \).

2. Sets of small diameter

In this section we obtain a result in the special case of sets of small diameter, and in the next section we show that the main theorem reduces to this special case.

Lemma 1. Let \(B \) be a nonempty, finite set of positive integers such that
\[
\max(B) \leq 2 \min(B).
\]

Then
\[
|E_2(B)| \geq \left(\frac{|B|}{384} \right)^{16/15}.
\]

Proof. Let \(|B| = k \). If \(k < 384 \), the inequality is trivial, so we can assume that
\[
k \geq 384 = 2^5 12.
\]

Then
\[
(k/12)^{1/5} \geq 2.
\]

Let
\[
l = \left\lfloor \left(\frac{k}{12} \right)^{1/5} \right\rfloor.
\]
Then
\[
I \geq \frac{1}{2} \left(\frac{k}{12} \right)^{1/5} = \left(\frac{k}{384} \right)^{1/5}.
\]
Since
\[
k \geq 12l^5,
\]
it follows that
\[(1) \quad \left[\frac{k}{l} \right] \geq 12l^4.
\]
Let \(B = \{b_1, \ldots, b_k\}\), where
\[
1 \leq b_1 < b_2 < \cdots < b_k \leq 2b_1.
\]
For \(i = 1, 2, \ldots, \lfloor k/l \rfloor\), let
\[
B_i = \{b_{(i-1)l+1}, b_{(i-1)l+2}, \ldots, b_{il}\} \subseteq B
\]
and
\[
d_i = b_{il} - b_{(i-1)l+1}.
\]
Choose \(i_0\) so that
\[
d_{i_0} = \min\{d_i \mid i = 1, \ldots, \lfloor k/l \rfloor\},
\]
and let
\[
B^* = B_{i_0}
\]
and
\[
d^* = d_{i_0}.
\]
Suppose that
\[
1 \leq i < j \leq \left[\frac{k}{l} \right] \quad \text{and} \quad j - i \geq 3.
\]
If
\[
b_1^*, b_2^* \in B^* \quad \text{and} \quad b_i^* \in B_i, b_j^* \in B_j,
\]
then
\[
x^* = b_2^* - b_1^* \leq d^*
\]
and
\[
x = b_j^* - b_i^* > d_{i+1} + d_{i+2} + \cdots + d_{j-1} \geq 2d^* > 0.
\]
It follows that
\[
b_1^* + b_j^* = b_2^* + b_i^*.
\]
Suppose that
\[
b_1^* b_j^* = b_2^* b_i^*.
\]
Since \(b_i^* < b_j^*\), it follows that \(b_2^* > b_1^*\) and so \(x^* > 0\). Since
\[
b_j^* \leq b_k \leq 2b_1 \leq 2b_1^*,
\]
it follows that
\[
b_1^* b_j^* = b_2^* b_i^* = (b_1^* + x^*)(b_j^* - x) = b_1^* b_j^* + x^* b_j^* - x b_1^* - x^* x,
\]
and so
\[
0 < x^* x = x^* b_j^* - x b_1^* \leq b_1^*(2x^* - x) \leq b_1^*(2d^* - x) < 0,
\]
which is absurd. Therefore,
\[
b_1^* b_j^* \neq b_2^* b_i^*.
\]
It follows that

\((B^* + B_j) \cap (B^* + B_i) = \emptyset\)

and

\((B^* \cdot B_j) \cap (B^* \cdot B_i) = \emptyset\)

for every pair \(i, j\) of integers such that \(j - i \geq 3\).

We shall consider only the sets \(B_1, B_4, B_7, \ldots\), that is, the sets \(B_i\) such that \(i \equiv 1 \pmod{3}\). There are at least

\(\left\lceil \frac{k}{3} \right\rceil\)

such sets. Let

\(0 < \theta < 1\)

and

\(\beta = \theta/3 < 1/3\).

Let

\(E(B^*, B_i) = (B^* + B_i) \cup (B^* \cdot B_i)\),

and let

\[I_1 = \{ i \equiv 1 \pmod{3} | |E(B^*, B_i)| < l^{1+\beta} \}\]

and

\[I_2 = \{ i \equiv 1 \pmod{3} | |E(B^*, B_i)| \geq l^{1+\beta} \}\]

Then

\(|I_1| + |I_2| \geq \frac{1}{3} \left\lceil \frac{k}{7} \right\rceil\).

Suppose that

\(|I_1| \geq \frac{1}{6} \left\lceil \frac{k}{7} \right\rceil\).

Let \(i \in I_1\). For \(m \in B^* \cdot B_i\), let \(\rho(m)\) denote the number of representations of \(m\) in the form \(b^*b'_i\), where \(b^* \in B^*\) and \(b'_i \in B_i\). Choose \(m'\) such that

\(\rho(m') = \max\{\rho(m) | m \in B^* \cdot B_i\}\).

Since \(|B^*| = |B_i| = l\), it follows that

\(l^2 = \sum_{m \in B^* \cdot B_i} \rho(m) \leq \rho(m')|B^* \cdot B_i| < \rho(m')l^{1+\beta}\),

and so

\(\rho(m') > l^{1-\beta}\).

For \(j = 1, \ldots, \rho(m')\), choose \(b_j^* \in B^*\) and \(b_j' \in B_i\) such that

\(b_j^*b_j' = m'\)

and \(b_j^* \neq b_{j'}^*\) for \(j_1 \neq j_2\). There are \(\rho(m')^2\) expressions of the form

\(b_j^* + b_{j'}' \in B^* + B_i\),

where \(j, j' = 1, \ldots, \rho(m')\). Since \(i \in I_1\) and \(\beta < 1/3\), it follows that

\(\rho(m')^2 > l^{2-2\beta} > l^{1+\beta} > |B^* + B'_i|\),

and so there exist \(b_{j_1}^*, b_{j_2}^* \in B^*\) and \(b_{j_3}', b_{j_4}' \in B_i\) such that \(b_{j_1}^* \neq b_{j_2}^*\) and

\(b_{j_1}^* + b_{j_3}' = b_{j_2}^* + b_{j_4}'\).
It follows from (5) that also

\[(7) \quad b'_{j_3} = b'_{j_4}.\]

What we have just shown is that for every \(i \in I_1\) there exist four positive integers \(b^*_j, b^*_j, b_j, b_j \in B^*\) and two positive integers \(b'_{j_3}, b'_{j_4} \in B_i\) that satisfy equations (6) and (7). However, given any positive integers \(b^*_j, b^*_j, b_j, b_j \in B^*\) and two positive integers \(b'_{j_3}, b'_{j_4} \in B_i\) equations (6) and (7) have at most one solution in integers \(b'_{j_3}, b'_{j_4}\). Since the number of quadruples of elements of \(B^*\) is exactly \(l^4\), if \(|I_1| \geq \frac{1}{6} \left\lfloor \frac{k}{l} \right\rfloor\), then \(l^4 \geq |I_1| \geq \frac{1}{6} \left\lfloor \frac{k}{l} \right\rfloor \geq 2l^4\), which is absurd. Therefore,

\[|I_1| < \frac{1}{6} \left\lfloor \frac{k}{l} \right\rfloor, \]

and so, by (4), we have

\[|I_2| \geq \frac{1}{6} \left\lfloor \frac{k}{l} \right\rfloor. \]

Let

\[n \in \bigcup_{i \in I_2} E(B^*, B_i). \]

It follows from (2) and (3) that \(n\) belongs to at most two of the sets \(E(B^*, B_i)\). Therefore,

\[
|E_2(B)| \geq \left| \bigcup_{i \in I_2} E(B^*, B_i) \right| \geq (1/2) \sum_{i \in I_2} |E(B^*, B_i)| \geq (1/2)|I_2|^{1+\beta} \geq (1/12) \left\lfloor \frac{k}{l} \right\rfloor^{1+\beta} \geq (1/12)(12l^4)^{l^{1+\beta}} = l^{5+\beta} \geq \left(\frac{k}{384} \right)^{1+\beta/5} = \left(\frac{k}{384} \right)^{1+\theta/15}.
\]

Since this holds for all \(\theta < 1\), we obtain

\[|E_2(B)| \geq \left(\frac{k}{384} \right)^{16/15}. \]

This completes the proof of the lemma.

3. The main result

Theorem 1. Let \(A\) be a nonempty, finite set of positive integers. Then

\[|E_2(A)| \geq c|A|^{32/31}, \]

where \(c = 0.00028\ldots\).

Proof. For \(j = 1, 2, \ldots\), let

\[U_j = [2^{j-1}, 2^j) \]

and

\[V_j = [4^{j-1}, 4^j) = U_{2j-1} \cup U_{2j}. \]

Let

\[A_j = A \cap U_j = \{a \in A \mid 2^{j-1} \leq a < 2^j\} \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for \(j = 1, 2, \ldots \). Then \(A = \bigcup_{j=1}^{\infty} A_j \), the sets \(A_j \) are pairwise disjoint, and
\[
\sum_{j=1}^{\infty} |A_j| = k.
\]

Let \(\alpha > 0 \), and let
\[
c_1 = (384)^{-16/15}
\]
and
\[
c_2(\alpha) = \frac{c_1}{3} \cdot 2^{1+\alpha/15} < c_1 < \frac{1}{32}.
\]

There are two cases. In the first case, we assume that if \(A_j \neq \emptyset \), then
\[
|A_j| \geq k^\alpha.
\]

Since \(\max(A_j) \leq 2 \min(A_j) \), the set \(A_j \) satisfies the conditions of the lemma, and so
\[
|E_2(A_j)| \geq c_1 |A_j|^{16/15}.
\]

Let
\[
n \in \bigcup_{j=1}^{\infty} E_2(A_j).
\]

There exists a unique integer \(t \) such that
\[
n \in V_t = U_{2t-1} \cup U_{2t}.
\]

Observe that if \(a, a' \in A_j \), then \(a + a' \in U_{j+1} \) and \(aa' \in V_j \). Suppose that \(n \in E_2(A_j) \). If \(n \) is a product of two elements of \(A_j \), then \(n \in V_j \) and so \(j = t \). If \(n \) is a sum of two elements of \(A_j \), then \(n \in U_{j+1} \), and so \(j = 2t - 2 \) or \(2t - 1 \). Therefore, \(n \) belongs to at most three of the sets \(E_2(A_j) \). It follows that
\[
|E_2(A)| \geq \left| \bigcup_{j=1}^{\infty} E_2(A_j) \right|
\]
\[
\geq (1/3) \sum_{j=1}^{\infty} |E_2(A_j)|
\]
\[
\geq (1/3) \sum_{j=1}^{\infty} c_1 |A_j|^{16/15}
\]
\[
= (c_1/3) \sum_{j=1}^{\infty} |A_j| \cdot |A_j|^{1/15}
\]
\[
\geq (c_1/3) k^{\alpha/15} \sum_{j=1}^{\infty} |A_j|
\]
\[
= (c_1/3) k^{\alpha/15} k
\]
\[
> c_2(\alpha) k^{1+\alpha/15}.
\]

In the second case, there exist sets \(A_j \) such that
\[
0 < |A_j| < k^\alpha.
\]

Let
\[
J = \{ j \mid 0 < |A_j| < k^\alpha \}.
\]
If

\[\left| \bigcup_{j \in J} A_j \right| < k/2, \]

let

\[A' = A \setminus \left(\bigcup_{j \in J} A_j \right), \]

and let

\[A'_j = A' \cap U_j = \{ a \in A' \mid 2^{j-1} \leq a < 2^j \}. \]

Then

\[k/2 < |A'| = k' \leq k. \]

If \(A'_j \neq \emptyset \), then \(A'_j = A_j \) and

\[|A'_j| = |A_j| \geq k^\alpha \geq (k')^\alpha. \]

Therefore, we can apply the previous case to the set \(A' \), and obtain

\[|E_2(A)| \geq |E_2(A')| \geq (c_1/3)(k')^{1+\alpha/15} > c_2(\alpha)k^{1+\alpha/15}. \]

On the other hand, if

\[k/2 \leq \left| \bigcup_{j \in J} A_j \right| < |J|k^\alpha, \]

then

\[|J| > k^{1-\alpha}/2. \]

Let \(j_1 < j_2 < j_3 < \cdots \) be the elements of \(J \) arranged in increasing order, and choose

\[a^*_1 \in A_{j_1}, a^*_2 \in A_{j_3}, a^*_3 \in A_{j_3}, \ldots. \]

Let

\[A^* = \{ a^*_i \mid i = 1, 3, 5, \ldots \} \subseteq A. \]

Then

\[|A^*| \geq |J|/2 > k^{1-\alpha}/4. \]

Since \(a^*_i \in A_{j_i} \), it follows that

\[2a^*_i < 2^{j_i+1} \leq 2^{j_{i+2}} \leq 2^{j_{i+1}+2} \leq a^*_{i+2}, \]

and so the sums of distinct pairs of elements of \(A^* \) are distinct. Therefore,

\[|E_2(A)| \geq |E_2(A^*)| \geq |2A^*|^2/2 > k^{2-2\alpha}/32 > c_2(\alpha)k^{2-2\alpha}. \]

Choose

\[\alpha = 15/31. \]

Then

\[2 - 2\alpha = 1 + \frac{\alpha}{15}, \]

and we obtain

\[|E_2(A)| \geq c k^{32/31}, \]

where

\[c = c_2(15/31) = \frac{1}{6 \cdot (384)^{16/15} \cdot 2^{1/31}} = 0.00028 \ldots. \]

This completes the proof of the theorem.
REFERENCES

DEPARTMENT OF MATHEMATICS, LEHMAN COLLEGE (CUNY), BRONX, NEW YORK 10468

E-mail address: nathansn@alpha.lehman.cuny.edu