## A family of permitted trigonometric thin sets

HTML articles powered by AMS MathViewer

- by Miroslav Repický PDF
- Proc. Amer. Math. Soc.
**125**(1997), 137-144 Request permission

## Abstract:

We introduce the notion of perfectly measure zero sets and prove that every perfectly measure zero set is permitted for the families of all pseudo-Dirichlet sets, N$_{0}$-sets, A-sets and N-sets. In particular this means that these families of trigonometric thin sets are closed under adding sets of cardinality less than the additivity of Lebesgue measure.## References

- P. Hebroni,
*Sur les inverses des éléments dérivables dans un anneau abstrait*, C. R. Acad. Sci. Paris**209**(1939), 285–287 (French). MR**14** - Tomek Bartoszyński,
*Additivity of measure implies additivity of category*, Trans. Amer. Math. Soc.**281**(1984), no. 1, 209–213. MR**719666**, DOI 10.1090/S0002-9947-1984-0719666-7 - Bartoszyński T. and Recław I.,
*Not every $\gamma$-set is strongly meager*, preprint. - Bartoszyński T. and Scheepers M.,
*Remarks on sets related to trigonometric series*, Topology Appl.**64**(1995), 133-140. - Bary N. K.,
*A Treatise on Trigonometric Series*, Macmillan, New York, 1964. - Zuzana Bukovská and Lev Bukovský,
*Adding small sets to an $\textbf {N}$-set*, Proc. Amer. Math. Soc.**123**(1995), no. 12, 3867–3873. MR**1285977**, DOI 10.1090/S0002-9939-1995-1285977-5 - Bukovský L., Kholshchevnikova N. N. and Repický M.,
*Thin sets of harmonic analysis and infinite combinatorics*, Real Analysis Exchange**20**(1994/95), 454–509. - Eric K. van Douwen,
*The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR**776622** - J. Gerlits and Zs. Nagy,
*Some properties of $C(X)$. I*, Topology Appl.**14**(1982), no. 2, 151–161. MR**667661**, DOI 10.1016/0166-8641(82)90065-7 - Martin Goldstern,
*Tools for your forcing construction*, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 305–360. MR**1234283** - N. N. Kholshchevnikova,
*Uncountable $R$- and $N$-sets*, Mat. Zametki**38**(1985), no. 2, 270–277, 349 (Russian). MR**808896** - Recław I.,
*Private communication*. - Miroslav Repický,
*Goldstern-Judah-Shelah preservation theorem for countable support iterations*, Fund. Math.**144**(1994), no. 1, 55–72. MR**1271478**, DOI 10.4064/fm-144-1-55-72

## Additional Information

**Miroslav Repický**- Affiliation: Mathematical Institute of Slovak Academy of Sciences, Jesenná 5, 041 54 Košice, Slovakia
- Email: repicky@kosice.upjs.sk
- Received by editor(s): February 10, 1995
- Received by editor(s) in revised form: June 6, 1995
- Additional Notes: The work has been supported by grant 2/1224/94 of Slovenská grantová agentúra.
- Communicated by: Andreas R. Blass
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 137-144 - MSC (1991): Primary 42A20; Secondary 03E05, 03E20
- DOI: https://doi.org/10.1090/S0002-9939-97-03516-8
- MathSciNet review: 1343721