INFINITE LOOP SPACES
AND NEISENDORFER LOCALIZATION

C. A. MCGIBBON

(Communicated by Thomas Goodwillie)

Abstract. There is a localization functor \(L \) with the property that \(L(X) \) is the \(p \)-completion of \(X \) whenever \(X \) is a finite dimensional complex. This same functor is shown to have the property that \(L(E) \) is contractible whenever \(E \) is a connected infinite loop space with a torsion fundamental group. One consequence of this is that many finite dimensional complexes \(X \) are uniquely determined, up to \(p \)-completion, by the homotopy fiber of any map from \(X \) into the classifying space \(BE \).

1. Introduction

Fix a rational prime \(p \) and let \(\mathcal{L}_p \) denote the homotopy functor defined by localizing with respect to the constant map \(\varphi : B\mathbb{Z}/p \to \ast \), in the sense of Dror Farjoun [4], and then completing at the prime \(p \) in the sense of Bousfield-Kan [2]. In symbols, \(\mathcal{L}_p(X) = (L_\varphi(X))_p \). This is the localization functor to which the title refers. Now if \(X \) is a finite nilpotent complex, it follows from Miller’s solution to the Sullivan conjecture that \(\mathcal{L}_p(X) \cong X_p \). At first glance, this would suggest that the functor \(\mathcal{L}_p \) is unlikely to yield any new information. However, in [10], Neisendorfer showed that this functor has a remarkable property when applied to the \(n \)-connected cover, \(X(n) \), of certain spaces \(X \). His main result was the following.

Theorem 1. Let \(X \) be a 1-connected finite dimensional complex with \(\pi_2(X) \) a torsion group. Then \(\mathcal{L}_p(X(n)) \cong X_p \) for any positive integer \(n \).

Thus, up to \(p \)-completion, no information is lost when one passes to the \(n \)-connected cover of such a complex! Of course, this is false for more general spaces, where the first \(n \) homotopy groups and the corresponding \(k \)-invariants are irretrievably lost in such a process. Thus Theorem 1 reveals a subtle homotopy property of certain finite dimensional complexes. It is worth noting that Theorem 1 also applies to those iterated loop spaces of \(X \) which have the required connectivity.

The main result of this paper is another application of the functor \(\mathcal{L}_p \). It shows that the circle and its \(n \)-fold products are essentially the only infinite loop spaces of finite type which are not destroyed by Neisendorfer localization.

Theorem 2. Let \(E \) be a connected infinite loop space whose fundamental group is a torsion group. Then \(\mathcal{L}_p(E) \cong \ast \) for each prime \(p \).
This result is about as close as one can get to saying that, in general, the classifying space $B\mathbb{Z}/p$ is the prime ingredient or the major building block in the p-primary part of infinite loop spaces of the sort just described. However, under certain special conditions (see Theorem 2.1) one can say more; in that case there is a cellular inequality $B\mathbb{Z}/p \ll E$ in the sense of Dror Farjoun, [5]. Roughly this means that E can be constructed from $B\mathbb{Z}/p$ and its suspensions in much the same way that a CW-complex is built out of the sphere S^0 and its suspensions. More accurately, it means that E is a member of the smallest class of spaces which contains $B\mathbb{Z}/p$ and is closed under weak equivalences and pointed homotopy colimits, [5].

The following theorem, from [8], is similar to Theorem 2 although the precise connection between the two results is not clear to me. This result is another offspring of the Sullivan conjecture.

Theorem 3. Let E be a connected infinite loop space whose fundamental group is a torsion group, and assume that Y is a nilpotent finite CW-complex. Then the function space of based maps from E to the p-completion of Y is weakly contractible.

At any rate, we see that as far as maps into finite complexes are concerned, most infinite loop spaces behave just like $B\mathbb{Z}/p$. It was this fact that led me to wonder if Theorem 2 might be true.

There is a crucial step in the proof of Neisendorfer’s theorem where one shows that $L_p(Y) \simeq \ast$ when Y is a connected loop space with a torsion fundamental group and only finitely many nonzero higher homotopy groups. Theorem 2 plays the same role in the next result, which deals with the infinite suspension. As usual, let $QX = \text{colim}_n \Omega^n\Sigma^n X$ for a pointed space X and let $\iota : X \to QX$ be the usual inclusion. More precisely, ι is the map whose adjoint is the identity on $\Sigma^\infty X$. Let $\text{Fib}(\iota_X)$ denote the homotopy fiber of the map ι. The final result deals with the homotopy fibration

$$\text{Fib}(\iota_X) \xrightarrow{\ i \ } X \xrightarrow{\ i \ } QX.$$

Corollary 4.1. Let X be a 1-connected finite dimensional complex with $\pi_2(X)$ a torsion group. There is a homotopy equivalence $L_p(\text{Fib}(\iota_X)) \simeq X_p$ induced by the map ι.

In other words, up to p-completion, such a space can be recovered from the fiber of its infinite suspension! Notice that the map $X \to QX$ is an equivalence through some finite range of dimensions (the stable range—which, of course, depends on the connectivity of X) and one might think that this stable information is lost when one passes to the fiber. However, just as in Neisendorfer’s theorem, the fiber somehow retains this data.

2. Proofs

Each space in this paper is assumed to have the homotopy type of a CW-complex. All spaces and maps are assumed to be pointed. To simplify notation, let $B = B\mathbb{Z}/p$. We will sometimes assume certain spaces are p-local without burdening the notation with this assumption. Let $C(B)$ denote the smallest class of connected spaces which contains B and is closed under both weak equivalences and pointed homotopy colimits. It is not difficult to see that the one-point space \ast, is in this class, as are the iterated suspensions Σ^nB for $n = 1, 2, \ldots$ Following Dror Farjoun, [7], write $X \gg B$ iff X belongs to $C(B)$. Note also that $L_p(X) \simeq \ast$ whenever
$X \gg B$ \textit{(ibid., Prop. A7)}. In the same paper it is noted that for connected spaces X and Y, one has
\[\Sigma X \ll Y \iff X \ll \Omega Y. \]
Thus the inequality $\Sigma^n B \ll \Sigma^n B$ implies that $B \ll \Omega^n \Sigma^n B$ for each n. Taking colimits, it follows that QB is a member of $C(B)$. Let $QS^0(0)$ denote the base point component of QS^0. This component is a retract of QB by the Kahn-Priddy Theorem, \cite{1}. It is not difficult to see that if Y is a retract of a connected H-space X, then $Y \gg X$, and hence
\[B \ll QS^0(0). \]
Since $QS^n(n) \simeq \Omega QS^{n+1}(n+1)$, it follows that
\[\Sigma^n B \ll QS^n(n) \]
for each n. Thus $L_p(QS^n(n)) \simeq \ast$ for each $n \geq 0$. The next step is to establish the same result for QS^n for each $n \geq 2$. To do this we will use the fibration
\[QS^n(n) \rightarrow QS^n \rightarrow K(Z, n) \]
and the following important result due to Dror Farjoun, \cite{5}.

\textbf{Theorem 5.} Given a map $f : X \rightarrow Y$ and a fibration $F \rightarrow C \rightarrow D$, if $L_f(F) \simeq \ast$, then $L_f(\pi)$ is a homotopy equivalence.

There is a technical point that should be mentioned before using this result. Recall that L_p was defined as the composite of two functors: L_ω, followed by p-completion. Thus it is not obvious that it can be used with Theorem 5. However, Neisendorfer shows in \cite{10}, Lemma 1.4, that when applied to simply connected spaces, $L_p = L_f$ where $f : B \vee M \rightarrow \ast$. Here B is again BZ/p and M is the Moore space with one nontrivial reduced homology group isomorphic to $Z[1/p]$ in dimension 1. Thus Theorem 5 can be used with L_p.

Now $L_p(K(\pi, n)) \simeq \ast$ for each $n \geq 2$ and for any abelian group π, according to Casacuberta (\cite{3}, §7). Therefore, using Theorem 5 on the fibration over $K(Z, n)$ mentioned earlier, it follows that the Neisendorfer localization of QS^n is contractible for each $n \geq 2$.

Let X be a 1-connected finite CW-complex. Consider the cofibrations which inductively construct its skeleta,
\[\vee S^n \rightarrow X_{n-1} \rightarrow X_n, \]
starting with $X_1 = \ast$. Each of these cofiber sequences involves only a finite number of spheres. The functor $Q(\)$ converts these cofibrations into fibrations,
\[\times Q(S^n) \rightarrow Q(X_{n-1}) \rightarrow Q(X_n). \]
The functor L_p commutes with finite products, \cite{6}, and so Theorem 5 together with the result for QS^n implies that $L_p(QX) = L_p(QX_n) = \cdots = L_p(QX_1) = \ast$.

Now let E denote a 1-connected infinite loop space. Choose a CW-decomposition of E in which every finite subcomplex is 1-connected. It is clear that
\[QE \simeq \operatorname{colim} Q(K). \]
where K runs through the finite subcomplexes of E. Apply the functor L_p to both sides of this equation and note that, in general,
\[L_f(\operatorname{colim}_\alpha X_\alpha) \simeq L_f(\operatorname{colim}_\alpha L_f(X_\alpha)) \]
according to Dror Farjoun, [7]. This implies that $L_p(QE) \simeq \ast$. Since E is an infinite loop space, it is a retract of QE. It follows at once that $L_p(E)$ must also be contractible.

Finally consider the case where E is not simply connected. Its fundamental group π must be an abelian torsion group. Apply Theorem 5 to the fibration

$$E(1) \longrightarrow E \longrightarrow K(\pi, 1).$$

Since L_p annihilates both the fiber and base space, the conclusion of Theorem 2 follows.

The following result gives some conditions under which $B \ll E$. I am not certain that this result is best possible.

Theorem 2.1. Assume that E is an infinite loop space which is p-local, rationally trivial, and n-connected where $n \geq 1$. Then $\Sigma^{n-1}B\mathbb{Z}/p \ll E$.

Proof. Since E is n-connected and rationally trivial it can be obtained as the homotopy colimit of a direct system of finite complexes with the same two properties. These finite complexes, in turn, can be constructed using mod-p^r Moore spaces, for various r, instead of spheres. Express this particular colimit as

$$E \simeq \operatorname{colim}_\alpha L_{\alpha}.$$

Write $A \ll X$ to signify that the localization of X with respect to the map $A \rightarrow \ast$ is contractible. The implication $\Sigma A \ll X \implies A \ll X$ is due to Dror Farjoun [5] and plays a crucial role in what follows.

Lemma 2.1.1. If $0 \leq k < n$, then $\Sigma^k B\mathbb{Z}/p < Q(S^n \cup_{p^r} e^{n+1})$.

Assume for the moment that this inequality is true. Let L denote one of the finite complexes in the expression of E as a colimit. Then L can be obtained in a finite sequence of cofibrations

$$M_q \longrightarrow L_{q-1} \longrightarrow L_q$$

where each M_q is a finite wedge of Moore spaces, each of which is at least n-connected. Apply $Q(\)$ to this cofiber sequence to obtain a fibration. Using Lemma 2.1.1 it follows that $\Sigma^n B < Q(M_q)$. Apply Theorem 5 to this fibration, where $f : \Sigma^n B \rightarrow \ast$. It follows from a finite induction that $\Sigma^n B < QL$. Since $QE \simeq \operatorname{colim}_\alpha QL_{\alpha}$, it follows that $\Sigma^n B < E$ (and hence, that $\Sigma^{n-1} B \ll E$) by the same arguments that were used in the proof of Theorem 2.

To verify the lemma, take the cofiber sequence

$$S^n \longrightarrow \frac{p^r}{\partial} S^n \longrightarrow S^n \cup_{p^r} e^{n+1},$$

apply the functor Q to it, and then take n-connected covers. It was shown earlier that $\Sigma^n B < Q(S^n)\langle n \rangle$. Thus Theorem 5, applied to the fibration just obtained, implies that $\Sigma^n B < Q(S^n \cup_{p^r} e^{n+1})\langle n \rangle$. Theorem 5 can also be used to show first

1This result seems best possible, since L_f does not commute with direct limits in general. A good example is the case of $QX = \operatorname{colim} \Omega^n \Sigma^n X$ when X is a mod p Moore space. It has been shown that $L_p(QX) = \ast$, and yet L_p acts like the identity on each term in the colimit.
that $B < K(\mathbb{Z}/p^r, 1)$ and then that $\Sigma^{n-1}B < K(\mathbb{Z}/p^r, n)$). The conclusion of the lemma then follows from a final application of Theorem 5 to the fibration

$$
\Omega E \longrightarrow \text{Fib}(\rho) \longrightarrow X.
$$

Final remarks

The results in this paper give further testament to the power of recent advances made in unstable localization by Bousfield, Dror Farjoun, and others; e.g., see [3]. The preprints of Dror Farjoun, listed below, are available on the Hopf Topology archive. The material they contain will soon appear in a Springer monograph by him.

REFERENCES

Department of Mathematics, Wayne State University, Detroit, Michigan 48202
E-mail address: mcgibbon@math.wayne.edu