AFFINE AND HOMEOMORPHIC EMBEDDINGS INTO ℓ^2

CZESŁAW BESSAGA AND TADEUSZ DOBROWOLSKI

(Communicated by James E. West)

Abstract. It is shown that
(1) a locally compact convex subset C of a topological vector space that
admits a sequence of continuous affine functionals separating points of C
affinely embeds into a Hilbert space;
(2) an infinite-dimensional locally compact convex subset of a metric linear
space has a central point;
(3) every σ-compact locally convex metric linear space topologically embeds
onto a pre-Hilbert space.

Let C be a convex subset of a separable metric linear space E. The question
arises of whether C can be embedded onto a convex subset of ℓ^2, or onto a linear
subspace of ℓ^2 provided C is linear. A positive answer to this question would reduce
the topological identification of such arbitrary convex sets C to those contained in
ℓ^2. Let us mention that this identification problem has a satisfactory solution for
complete sets C which are AR’s. It is shown in [DT1] and [DT2] that an infinite-
dimensional set C which is an AR is either a (contractible) Hilbert cube manifold
or a copy of ℓ^2. The case of incomplete C, in particular, the σ-compact case, is
far from being settled (even for C which are AR’s). By Dugundji’s theorem (see
[BP2, p. 61]), every convex subset C of a locally convex E is an AR. It is unknown
whether this is true for an arbitrary metric linear space E. Therefore the AR-
property of C could possibly be an obstacle for embedding C onto a convex subset
of ℓ^2.

The first part of the paper is devoted to affine embeddings of locally compact
convex sets C into ℓ^2. Due to an elementary observation of Klee (see [BP2, p. 98])
every compact convex subset of a locally convex E affinely embeds into ℓ^2. Following
this, the notion of a Keller set was introduced which proved to be important in
solving some identification problems, see [BP2]. An infinite-dimensional compact
convex set C is a Keller set if it affinely embeds into ℓ^2. It is known that not
all infinite-dimensional compact convex sets C are Keller sets. The examples of
compact convex subsets C without extreme points given by Roberts (see [R1],
[R2], and [KPR]) obviously cannot be affinely embedded into ℓ^2. Refining the
construction of Roberts one can find such C with the AR-property ([DM2] and

Received by the editors July 21, 1992.
1991 Mathematics Subject Classification. Primary 57N17.
Key words and phrases. Convex set, affine embedding, locally convex space, central points,
σ-compact spaces.

1By the time this paper was sent to the printer both these questions were answered in the
negative; see [Mar] and [Ca].

©1997 American Mathematical Society
We show that every locally compact (closed) convex subset \(C \) of \(E \) whose dual \(E^* \) separates points of \(C \) admits an affine (closed) embedding into \(\ell^2 \); this answers [BP2, Problems 1 and 2, p. 99].

The importance of a Keller space \(C \) comes from the fact that \(C \) has a so-called central point (see [BP2, p. 157]). This fact was recovered in [vBDHvM] for an arbitrary infinite-dimensional compact convex set \(C \). We show that this remains true for locally compact convex \(C \), solving a question raised in [vBDHvM]. Similarly as in [vBDHvM], we apply this fact to show that the AR-property of a locally compact convex \(C \) is equivalent to the homeomorphism extension property between so-called \(Z_\infty \)-sets in \(C \).

In the second part of the paper we show that every \(\sigma \)-compact linear subspace \(E \) that is locally convex embeds onto a dense linear subspace of \(\ell^2 \), which answers [DM1, Problem 587]. The proof is obtained by constructing a pre-Hilbert space \(H \) so that the classes of compacta embeddable in \(E \) and \(H \) coincide. Then we apply the uniqueness theorem on absorbing sets to get a homeomorphism of the linear completions \(\hat{E} \) and \(\hat{H} \) of \(E \) and \(H \), respectively, that sends \(E \) onto \(H \). Earlier, using the same approach, it was shown [Do3] that such \(E \) embeds onto a linear subspace of the countable product of lines. We leave as an open problem the question of whether an arbitrary convex \(\sigma \)-compact set \(C \) of such \(E \) embeds onto a convex subset of \(\ell^2 \).

1. Affine embeddings of convex local compacta

Let us start with the following fact which belongs to mathematical folklore.

1.0. Lemma. If \(K \) is a locally compact, \(\sigma \)-compact space which admits a sequence \(\{g_n\}_{n=1}^\infty \) of continuous real functions separating points of \(K \), then \(K \) is metrizable.

Proof. By our assumption, \(K \) locally embeds in the countable product of lines, and therefore is locally metrizable. Since \(K \) is \(\sigma \)-compact, it is Lindelöf, and consequently it is paracompact. Applying [En, Ex. 5.4.A, p. 415], \(K \) is metrizable. \(\square \)

Assume that a locally compact convex set \(C \) of a topological vector space \(E \) contains the origin \(0 \in E \). Then there exists a closed symmetric neighborhood \(U \) of \(0 \) in \(E \) such that

\[
(*) \quad U \cap C \text{ is compact.}
\]

We also have for every \(\lambda \geq 1 \)

\[
(**) \quad \lambda(U) \cap C \subset \lambda(U \cap C).
\]

1.1. Theorem. Let \(C \) be a locally compact (closed) convex subset of a topological vector space \(E \). If there exists a sequence of continuous affine functionals \(\{g_n\}_{n=1}^\infty \) on \(C \) separating points of \(C \), then \(C \) admits an affine (closed) embedding into \(\ell^2 \). Here \(\ell^2 \) can be replaced by an arbitrary infinite-dimensional, complete metric linear space.

Proof. We can assume that \(0 \in C \). Pick a closed symmetric neighborhood \(U \) of \(0 \) in \(E \) such that \((*) \) is satisfied. Let \(p_n = \max \{|g_n(x)| : x \in U \cap C\} \). Without loss of generality we may assume that \(p_n \leq 2^{-n} \) (if not, replace the functionals \(g_n \) by suitable positive multiples). Define \(T(x) = (g_n(x)) \) for \(x \in C \). The estimate for \(p_n \)'s and \((** \) together with the assumptions of the theorem imply that \(T \) is an injective affine map into \(\ell^2 \) and that, for every \(\lambda \geq 1 \), the restricted map \(T|\lambda(U)\cap C \) is continuous. Hence \(T : C \to \ell^2 \) is continuous.
Let Y be an infinite-dimensional, complete metric linear space and $|\cdot|$ be a monotone F-norm on Y, i.e., for every number $|\lambda| \leq 1$ and every $y \in Y$ we have $|\lambda y| \leq |y|$. By S. Mazur’s lemma (see the proof of [BP2, Prop. 2.2, p. 268]), there are (linearly independent) vectors $y_n \in Y$ such that for every sequence of reals $(t_n)_{n=1}^\infty$ with $|t_n| \leq 2^{-n}$, $n \geq 1$, the series $\sum_{n=1}^\infty |t_n y_n|$ converges and the map $(t_n) \mapsto \sum_{n=1}^\infty t_n y_n$ is injective. Let $T(x) = \sum_{n=1}^\infty g_n(x)y_n$ for $x \in C$. It is easy to check that T is a well-defined, injective, affine, continuous transformation of C into Y.

Using $(**) \text{ and } (**), C$ is σ-compact. By 1.0, C is metrizable. Therefore the following lemma completes the proof of the theorem.

1.2. Lemma. If C is a (closed) locally compact metrizable, convex subset of a topological vector space E and $T : C \to Y$ is an injective continuous affine map into a metric linear space, then T is a (closed) embedding.

Proof. Let $|\cdot|$ be a monotone F-norm on the space Y. First we shall show that

$$S = T^{-1} : T(C) \to E$$

is continuous at each point $y_0 = T(x_0) \in T(C)$. Replacing T by the map $x \mapsto T(x + x_0) - T x_0$, it is no loss of generality to assume that $x_0 = 0_E$, $y_0 = 0_Y$. (In the sequel we shall use one symbol 0 for denoting the points 0_E, 0_Y and the number zero.) Let U be a neighborhood of 0 in E satisfying $(*)$. We claim that there exists an $\epsilon > 0$ such that

$$(**) \text{ whenever } |T(x)| < \epsilon, x \in C, \text{ then } x \in \text{int } U \cap C.$$

If the claim were not true, then there would exist a sequence (x_n) of elements of C such that $x_n \in \partial U \cap C$ and such that $T x_n \to 0$ (use monotonicity of the F-norm $|\cdot|$). By $(*)$, there would exist a subsequence (z_n) of (x_n) with $T z_n \to 0$ such that $z_n \to z \in \partial U \cap C$, contradicting the continuity of T.

Since every neighborhood of 0 in E contains a neighborhood satisfying $(*)$, the condition $(**)$ implies the continuity of S at 0.

Assume that C is closed in E and that $y_n = T x_n \to y \in Y$, $x_n \in C$. Since the set $\{T x_n\}_{n=1}^\infty \cup \{y\}$ is compact, there exists $0 < a \leq 1$ such that $|a T x_n| < \epsilon$ for all n, where ϵ is that of $(**)$. Using the facts that $0 \in C$ and $a \leq 1$, all the points ax_n are in C. By $(**) \text{ and } (**)$ and the fact that T is affine, $ax_n \in \text{int } U \cap C$. By $(*)$, there is a subsequence $(a z_n)$ of the sequence (ax_n) such that $a z_n \to z \in U \cap C$. Therefore $z_n \to a^{-1} z$ which is in C (since C is closed) and

$$y = \lim T x_n = \lim T z_n = T(a^{-1} z) \in T(C).$$

This completes the proof.

In connection with the last part of our proof let us notice the following elementary fact.

1.3. Remark. If a locally compact convex set C is closed in a metric linear space, then C is also closed in the (linear) completion E of E. Apply 1.2 to the inclusion map of C into E.

Let us note the following generalization of [B, Cor. 1].

1.4. Corollary. Every metrizable locally compact convex (closed) subset C of a topological vector space E whose dual E^* separates points of E admits an affine (closed) embedding into ℓ^2.

By the compactness of C. Let U be a closed neighborhood of 0 in E satisfying (\ast). Fix a metric d on C. Since the set $A_r = \{k_1 - k_2 : k_1, k_2 \in U \cap C$, and $d(k_1, k_2) \geq \epsilon\}$, $\epsilon > 0$, is compact, there are finitely many functionals that separate points of A_r from 0. It follows that there exists a sequence of functionals $\{x_n^r\}_{n=1}^\infty \subset E^*$ that separate 0 from points of $(U \cap C) - \{U \cap C\} \{0\}$. Consequently, $\{x_n^r\}_{n=1}^\infty$ separates points of $U \cap C$. By $(\ast\ast)$, $\{x_n\}_{n=1}^\infty$ separates points of C and 1.1 is applicable.

2. Central points and application to the AR-property

A closed subset A of a metric space X is called a Z_∞-set [Tor], if every map of an n-dimensional cube I^n, $n \geq 1$, into X can be approximated by maps whose images miss A. If the space X is an ANR, then the set A is simply called a Z-set. The distinction of the terminology comes from the fact that for ANR spaces X the above property guarantees that every map of X into X can be approximated by maps whose images miss X (the property commonly understood to describe the fact that A is a Z-set in X). If A is not necessarily closed and satisfies the mapping condition for a Z_∞-set, then A is called locally homotopy negligible in X. We will use the above notions for the case where X is a convex subset of a metric linear space and hence, in general, it is merely contractible and locally contractible (and perhaps, is not an AR).

Throughout this section C will denote an infinite-dimensional locally compact convex subset of a complete metric linear space E endowed with an F-norm $|\cdot|$. We say that $x_0 \in C$ is a central point for C if the set $x_0 + [0,1) \cdot (C - x_0)$ is a countable union of Z_∞-sets in C. Our main result is

2.1. Theorem. There exists a central point for C.

The proof employs a few auxiliary lemmas.

2.2. Lemma. The set $x_0 + [0,1) \cdot C$ is a countable union of Z_∞-sets iff each $x_0 + [0,1 - \frac{1}{n}) \cdot C$ is locally homotopy negligible in C.

Proof. Since each $x_0 + [0,1 - \frac{1}{n}) \cdot C$ is a σ-compact subset of C and since a compact subset of a locally homotopy negligible set is a Z_∞-set, the fact that each $x_0 + [0,1 - \frac{1}{n}) \cdot C$ is locally homotopy negligible implies that $x_0 + [0,1) \cdot C$ is a countable union of Z_∞-sets in a complete metrizable space C. By [Tor, Cor. 2.7] it follows that $x_0 + [0,1) \cdot C$ is locally homotopy negligible. \hfill \square

2.3. Lemma. For every compact convex subset $C_0 \subseteq C$ the set $C - C_0$ is convex and locally compact.

Proof. Clearly $C - C_0$ is convex and we need to verify that $C - C_0$ is locally compact. By $(\ast\ast)$ it is enough to check the local compactness at $0 \in C - C_0$. Using the local compactness of C, for every $x \in C$ there exists $\delta_x > 0$ such that

$$C_x = \{y \in C : |x - y| \leq 2\delta_x\}$$

is compact.

By the compactness of C_0, there are $x_1, x_2, \ldots, x_k \in C_0$ such that

$$C_0 \subseteq \bigcup_{i=1}^k B_{x_i},$$
where \(B_x = \{ y \in C : |x - y| < \delta_x \}, x \in C_0 \). Set \(\delta = \min \{ \delta_{x_1}, \delta_{x_2}, \ldots, \delta_{x_k} \} \). We claim that

\[
\{ y - x : y \in C, x \in C_0 \text{ and } |y - x| \leq \delta \}
\]

is compact. Given an arbitrary \(x \in C_0 \), there exists \(i, 1 \leq i \leq k \), with \(x \in B_{x_i} \), i.e., \(|x - x_i| < \delta_{x_i}\). Now, pick any \(y \in C \) with \(|y - x| \leq \delta\). We have

\[
|y - x_i| \leq |y - x| + |x - x_i| \leq \delta + \delta_{x_i} \leq 2\delta_{x_i};
\]

hence \(y \in C_{x_i} \). Consequently,

\[
\{ y - x : y \in C, x \in C_0 \text{ and } |y - x| < \delta \} \subseteq \bigcup_{i=1}^{k} C_{x_i} - C_0.
\]

By (1), the lemma follows.

Before we provide a proof of 2.1 let us modify [vBDHvM, Lm. 4.1]. Every point \(x_0 \in C \) satisfying the assertion of 2.4 turns out to be a central point of \(C \).

2.4. Lemma. There exists \(x_0 \in C \) such that for every compact convex \(C_0 \subseteq C \) we have

\[
\inf_{0 \neq z \in C} \text{diam}_{|1|} \left([0, \infty) \cdot (z - x_0) \cap (C - C_0) \right) = 0.
\]

Proof (cf. [vBDHvM, proof of Lm. 4.1]). Assume \(0 \in C \). Take \(\delta > 0 \) so that \(U = \{ x \in C : |x| \leq \delta \} \) is compact. Fix a dense subset \(\{ x_n \}_{n=1}^{\infty} \) in \(C \) such that \(x_n \neq x_m \) for \(n \neq m \). Pick a sequence of positive reals \(\{ \lambda_n \}_{n=1}^{\infty} \) satisfying

\[
\sum_{n=1}^{\infty} \lambda_n \leq 1 \quad \text{and} \quad \sum_{n=1}^{\infty} |\lambda_n x_n| \leq \delta.
\]

It follows that the series \(\sum_{n=1}^{\infty} \lambda_n x_n \) converges to some \(x_0 \in U \). We claim that \(x_0 \) satisfies the assertion of the lemma. Otherwise, there would exist a compact convex subset \(C_0 \subseteq C \) such that

\[
\text{diam}_{|1|} \left([0, \infty) \cdot (z - x_0) \cap (C - C_0) \right) > \epsilon
\]

for some \(\epsilon > 0 \) and for all \(z \in C \setminus \{ x_0 \} \). From the definition of \(x_0 \) it follows that if \(k \neq l \) (and therefore \(x_k \neq x_l \)) and if \(0 < t < \min(\lambda_k, \lambda_l) \), then

\[
x_0 + t(x_k - x_l) = \sum_{n=1}^{\infty} \lambda_n x_n + tx_k - tx_l = \sum_{n=1}^{\infty} \mu_n x_n,
\]

where all \(\mu_k \) are positive and \(\sum_{n=1}^{\infty} \lambda_n = \sum_{n=1}^{\infty} \mu_n \leq 1 \), whence \(x_0 + t(x_k - x_l) \in C \). Therefore

\[
\text{diam}_{|1|} \left([0, \infty) \cdot (x_k - x_l) \cap (C - C_0) \right) > \epsilon
\]

for \(k \neq l \). Hence

\[
B = \left(\bigcup_{k,l} [0, \infty) \cdot (x_k - x_l) \right) \cap \{ x \in E : |x| < \frac{\epsilon}{2} \} \subset C - C_0.
\]

Since \(\{ x_n \}_{n=1}^{\infty} \) is dense in \(C \), we conclude that

\[
\text{span}(C) = [0, \infty) \cdot (C - C) \subseteq \bigcup_{k,l} [0, \infty) \cdot (x_k - x_l).
\]
This would imply
\[\{ x \in \text{span}(C) : |x| < \frac{\varepsilon}{2} \} \subset B \subset C - C_0 \]
(the closure taken in \(E \)). Since \(C - C_0 \) is locally compact (Lemma 2.3), so is \(C - C_0 \). By the infinite-dimensionality of \(\text{span}(C) \), no neighborhood of it can be locally compact, a contradiction.

2.5. Remark. If \(C \) is finite-dimensional, it has nonempty interior with respect to its affine hull and therefore the assertion of Lemma 2.4 is then false.

Proof of 2.1 (see [BP1, Lm. 2.7]). We will show that any point \(x_0 \) satisfying the assertion of 2.4 is a central point. We may assume that \(x_0 = 0 \). By 2.2, it is enough to show that \([0,1 - \frac{1}{n}] \cdot C \) is locally homotopy negligible in \(C \). Fix a map \(f : I^n \to C \) and \(\varepsilon > 0 \). Find \(f_1 : I^n \to C \cap L = C' \), where \(L \) is a finite-dimensional linear subspace of \(E \), such that \(d(f_1) < \frac{\varepsilon}{2} \) and \(C_0 = \text{conv}\{f_1(I^n)\} \subset \text{int}_L C' \). By Remark 2.5,

\[\inf_{0 \neq z \in C'} \text{diam}_1(\{(0, \infty) \cdot z \cap (C - C_0)\}) \geq \inf_{0 \neq z \in C'} \text{diam}_1(\{(0, \infty) \cdot z \cap (C' - C_0)\}) > 0, \]

and by 2.4, there exists \(q \in C \setminus L \) such that
\[\text{diam}_1(\{(0, \infty) \cdot q \cap (C - C_0)\}) < \frac{\varepsilon}{2}. \]

Write \(X = \text{span}(L, q) \), \(K = (1 - \frac{1}{n+1}) \cdot (C \cap X) \) and \(A = f_1(I^n) \). Define \(\{f_2(x)\} = (x + [0, \infty) \cdot q) \cap \partial X(K) \) for \(x \in A \). Since \(A \subset \text{int}_L C' \), we conclude that \(f_2(x) \) consists precisely of one point. We have \(f_2(x) \in C \) and \(f_2(x) \in C \setminus [0, 1 - \frac{1}{n}] \cdot C \). Moreover, \(f_2 : A \to C \) is continuous, and
\[d(f_2, \text{id}) \leq \text{diam}_1(\{(0, \infty) \cdot q \cap (C - C_0)\}) < \frac{\varepsilon}{2}. \]

Writing \(g = f_2 \circ f_1 \) we see that \(d(g, f) < \varepsilon \) and \(g(I^n) \subset C \setminus [0, 1 - \frac{1}{n}]C \).

2.6. Remark. The above argument shows that every \(x_0 \in C \) satisfying the assertion of 2.4 is also a central point of \(C \).

2.7. Corollary. If \(C \) has the homeomorphism extension property for \(Z_{\infty} \)-sets, then \(C \) is an AR.

Proof. By a result of [Do2], \(C \) is an AR iff for every compact subset \(A \subset C \) the identity map \(\text{id}_A \) can be approximated by maps with finite-dimensional ranges. Take a central point \(x_0 \) for \(C \) (Theorem 2.1). We can assume that \(x_0 = 0 \). Clearly the sequence of maps \(x \to (1 - \frac{1}{n+1})\cdot x \), \(x \in A \), converges to \(\text{id}_A \) and has ranges which are \(Z_{\infty} \)-sets. Consequently, we may assume that \(A \) itself is a \(Z_{\infty} \)-set. By [CDM, Prop. 3.5], there is a copy of the Hilbert cube \(Q \) contained in \(\frac{1}{2} \cdot C \). Since \(Q \) is a \(Z_{\infty} \)-set in \(C \), by our assumption, there is a homeomorphism \(h \) of \(C \) with \(h(A) \subset Q \).

The sequence \((h^{-1}\pi_nh) \), where \(\pi_n \) are standard projections \(Q = \prod_{k=1}^{\infty} I_k, I_k = I \),
onto \(\prod_{k=1}^{n} I_k \), approximates \(\text{id}_A \) and \(\dim(h^{-1}\pi_nh(A)) < \infty, n = 1, 2, \ldots \).
Applying [DT1, Th. 2] we obtain

2.8. Corollary. C has the homeomorphism extension property for Z_{∞}-sets iff C is a Hilbert cube manifold.

In [B, Rm. 3] it was shown that if E is locally convex, then C is homeomorphic to $Q \setminus K$, where K is a Z-set in Q. It suggests the following

2.9. Question. Assume that C is an AR. Is then C homeomorphic to $Q \setminus K$ for some Z-set K in the Hilbert cube Q?

Let us also ask

2.10. Question. Assume C is an AR. Is then \overline{C} an AR?

Note that if C is homogeneous, then the answer to 2.10 is “yes”.

2.11. Remark. Assume that C is closed in E and that C has the homeomorphism extension property for its Z_{∞}-sets. Write $cc(C) = \{x \in E : \exists (y \in C) (y + [0, \infty) \cdot x \subset C)\}$ for the characteristic cone for C. We have:

(i) If $cc(C) = \{0\}$, then C is homeomorphic to Q.

(ii) If $cc(C)$ is a linear subspace of E, then C is homeomorphic to $Q \times R^n$, where $n = \dim(cc(C))$, $n \geq 1$.

(iii) If $cc(C)$ is not linear, then C is homeomorphic to $Q \times [0, \infty)$.

Apply a result of [Do1].

In connection with 2.3 let us note that if C is a cone over a Keller set, then $C - C$ is not locally compact (it contains a closed infinite-dimensional linear subspace). Therefore the assumption that C_0 is compact is essential in 2.3. We have the following corresponding fact for topological groups.

2.12. Remark. Let G be a topological group. Assume $L \subset G$ is locally compact and $K \subset G$ is compact. If L is closed in G, then $L + K$ is locally compact. To justify this, pick $g = l + k$, $l \in L$ and $k \in K$. Since $(g - K) \cap L$ is a compact subset of L, it is contained in a compact neighborhood U in L. We claim that $U + K$ contains a neighborhood g (then, necessarily, relatively compact) in $L + K$. Otherwise, g will be an accumulation point of elements $l' + k'$, $l' \in L \setminus U$ and $k' \in K$. Using the compactness of K we easily get a contradiction.

If L happens not to be closed, then $L + K$ might not be locally compact. (Take $G = R^2$ with the addition, $L = \{(0, t) : |t| < 1\}$, and $K = \{\left(\frac{1}{n}, -1\right) : n = 1, 2, \ldots\} \cup \{(0, -1)\}$. Clearly $(0, 0) \in L + K$ has no compact neighborhood in $K + L$.)

The assertion of 2.12 and the above example are due to J. Grabowski.

3. Embedding of σ-compact linear spaces onto pre-Hilbert spaces

Let T be a topological class of compacta. A subset Y of a copy X of ℓ^2 is called T-absorbing provided $Y = \bigcup_{n=1}^{\infty} K_n$, $K_n \in T$, and the following condition is satisfied:
(abs) for every \(K \in T \) and a closed set \(A \subset K \), every map \(f : K \to X \) that restricts on \(A \) to an embedding into \(Y \) can be arbitrarily closely approximated by embeddings into \(Y \) that agree with \(f \) on \(A \).

We will make use of the following version of the uniqueness theorem for absorbing sets [BP2, p. 123].

3.1. Theorem. Let \(Y_1 \) and \(Y_2 \) be \(\sigma \)-compact subsets of the copies \(X_1 \) and \(X_2 \) of \(\ell^2 \), respectively. Assume \(Y_i \) is a \(K(Y_i) \)-absorbing set, where \(K(Y_i) \) is the class of compacta embeddable in \(Y_i \), \(i = 1, 2 \). If \(Y_i \) can be represented as \(\bigcup_{n=1}^{\infty} K^i_n \), where \(K^i_n \) are compacta such that \(K^i_n \subset K(Y_2) \) and \(K^i_n \subset K(Y_1) \) for all \(n = 1, 2, \ldots \) and \(i = 1, 2 \), then there exists a homeomorphism \(h \) of \(X_1 \) onto \(X_2 \) with \(h(Y_1) = Y_2 \).

The proof of 3.1 can be obtained by using a standard back and forth argument [BP2, p. 123]. Note that if \(Y \) is \(T \)-absorbing, then the condition (abs) remains true for an arbitrary compactum which is a union of two elements of \(T \), see [DM1, p. 412] (consequently, there is no need to require that \(T \) is additive).

We apply 3.1 with \((X,Y)\) a pair of locally convex separable metric linear spaces so that \(Y = E \) is infinite-dimensional and \(\sigma \)-compact and \(X = \hat{E} \) is its linear completion. By the Kadec-Anderson theorem [BP2, p. 189], \(\hat{E} \) is a copy of \(\ell^2 \). The following fact was proved in [Do3].

3.2. Proposition. The space \(E \) is a \(K(E) \)-absorbing subset of \(\hat{E} \).

3.3. Lemma. Expressing \(E = \bigcup_{n=1}^{\infty} K_n \), where \(K_n \) are compacta, there exists a linear (not necessarily continuous) injective transformation \(T \) of \(E \) into \(\ell^2 \) such that \(T \mid K_n \) is continuous, \(n = 1, 2, \ldots \).

Proof. Assume \(K_1 \subseteq K_2 \subseteq \cdots \). Pick a sequence of continuous linear functionals \(\{ x^*_n \}_{n=1}^{\infty} \) which separates points of \(E \). Let

\[
p_n = \max_{x \in K_n} \left(|x^*_1(x)|, |x^*_2(x)|, \ldots, |x^*_n(x)| \right).
\]

Write \(T(x) = \left(\frac{x^*_1(x)}{p_1}, \frac{x^*_2(x)}{p_2}, \ldots, \frac{x^*_n(x)}{p_n}, \frac{x^*_n(x)}{p_n} \right) \) and observe that for every \(x \in K_n \) and every \(i \geq n \) we have

\[
\left| \frac{x^*_i(x)}{p_i} \right| \leq \frac{1}{p_i}.
\]

It follows that \(T(K_n) \) is contained in a compact subset of \(\ell^2 \). Since the topology on compacta in \(\ell^2 \) coincides with the coordinatewise convergence topology, \(T \mid K_n \) is continuous. Clearly, \(T \) is a linear transformation of \(E \) into \(\ell^2 \).

3.4. Theorem. Every \(\sigma \)-compact locally convex metric linear space \(E \) is homeomorphic to a pre-Hilbert space \(H \). Moreover, there exists a homeomorphism of the linear completions \(\hat{E} \) of \(\hat{H} \) of \(E \) and \(H \), respectively, which sends \(E \) onto \(H \).

Proof. Represent \(E = \bigcup_{n=1}^{\infty} K_n \), where \(K_n \) are compacta. Pick a transformation \(T \) of 3.3. Apply 3.1 with \(Y_1 = E \) and \(Y_2 = T(E) \). By 3.2, each \(Y_i \) is a \(K(Y_i) \)-absorbing set. Since \(T \mid K_n \) is continuous the other assumption of 3.1 is also satisfied. Now, the theorem follows from 3.1.

3.5. Remark. The Hilbert space \(\hat{H} \) in Theorem 3.4 can be replaced by an arbitrary locally convex complete separable metric linear space \(F \). Let \(\{(x_n, x^*_n)\}_{n=1}^{\infty} \) be a
biorthogonal sequence (i.e., $x_k^*(x_n) = 1$ and $x_k^*(x_m) = 0$ for $n \neq k$) such that the x_n’s are linearly dense in F and the x_n’s separate points of F (see, e.g., [Kl, Cor. 2.3]). Replacing, if necessary, the x_n’s by suitable scalar multiples the formula $S((t_n)) = \sum_{n=1}^{\infty} t_n x_n$ defines a continuous linear injection of ℓ^2 onto a dense subspace of F. Now, the argument of 3.4 applies, and there exists a homeomorphism of \hat{H} onto F which carries $T(E)$ onto $S(T(E))$.

We do not know whether the assertion of 3.4 can be extended over all convex σ-compacta C of locally convex metric linear spaces E. The case where the closure \overline{C} of C in \hat{E} is locally compact is obviously settled by Theorem 1.1. Assume that \overline{C} is nonlocally compact. By a result of [DT2], \overline{C} is then homeomorphic to ℓ^2. Note that 3.3 easily extends for the convex case. However, we are not able to show that C is a $\mathcal{K}(C)$-absorbing set in \overline{C} and consequently we cannot apply 3.1 (it is even unclear how to check the condition (abs) for such C contained in ℓ^2). In general, we do not know whether C must be homogeneous. The following example shows that not all convex sets with nonlocally compact closures are homogeneous.

3.6. Example. Let $C = B \cup A$, where B is the open unit ball in ℓ^2 and A is a copy of the rationals embedded into its sphere. Clearly, C is convex and each point $p \in A \subset C$ has no complete neighborhood while $0 \in C$ has a basis of complete neighborhoods in C.

Let us finally recall that, according to [CDM], C is a $\mathcal{K}(C)$-absorbing set in \overline{C} in the following instances:

- (1) if C is a countable union of finite-dimensional compacta,
- (2) if C contains a Keller set.

References

Separable complete ANR’s admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229–235. MR 83a:58007

Pathological compact convex sets in the spaces L_p, $0 \leq p \leq 1$, The Altgeld Book, University of Illinois, 1976.

H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of ℓ^2-manifolds, Fund. Math. 101 (1978), 93–110. MR 80g:57019

Instytut Matematyki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, POLAND

E-mail address: bessaga@impan.impan.gov.pl

Current address, T. Dobrowolski: Department of Mathematics, Pittsburg State University, Pittsburg, Kansas 66762

E-mail address: tdobrowo@mail.pittstate.edu