Smooth representation of a parametric polyhedral convex set with application to sensitivity in optimization
HTML articles powered by AMS MathViewer
- by Dinh The Luc
- Proc. Amer. Math. Soc. 125 (1997), 555-567
- DOI: https://doi.org/10.1090/S0002-9939-97-03507-7
- PDF | Request permission
Abstract:
We show in this paper that if a polyhedral convex set is defined by a parametric linear system with smooth entries, then it possesses local smooth representation almost everywhere. This result is then applied to study the differentiability of the solutions and the marginal functions of several classes of parametric optimization problems.References
- Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
- B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Nonlinear parametric optimization, Birkhäuser Verlag, Basel-Boston, Mass., 1983. MR 701243
- Claude Berge, Espaces topologiques: Fonctions multivoques, Collection Universitaire de Mathématiques, Vol. III, Dunod, Paris, 1959 (French). MR 0105663
- George B. Dantzig, Jon Folkman, and Norman Shapiro, On the continuity of the minimum sets of a continuous function, J. Math. Anal. Appl. 17 (1967), 519–548. MR 207426, DOI 10.1016/0022-247X(67)90139-4
- Anthony V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Mathematics in Science and Engineering, vol. 165, Academic Press, Inc., Orlando, FL, 1983. MR 721641
- Reiner Horst and Hoang Tuy, Global optimization, Springer-Verlag, Berlin, 1990. Deterministic approaches. MR 1102239, DOI 10.1007/978-3-662-02598-7
- A. B. Levy and R. T. Rockafellar, Sensitivity analysis of solutions to generalized equations, Trans. Amer. Math. Soc. 345 (1994), no. 2, 661–671. MR 1260203, DOI 10.1090/S0002-9947-1994-1260203-5
- Đinh Thế Lục, Random version of the theorems of the alternative, Math. Nachr. 129 (1986), 149–155. MR 864629, DOI 10.1002/mana.19861290113
- D. T. Luc and P. H. Dien, Differentiable selection of optimal solutions in parametric linear programming, Proc. Amer. Math. Soc. (in press).
- J.-P. Penot, Preservation of persistence and stability under intersections and operations, Parts I, II, J. Optim. Theory Appl. 79 (1993), 525–550, 551–561.
- Jean-Paul Penot, Compact nets, filters, and relations, J. Math. Anal. Appl. 93 (1983), no. 2, 400–417. MR 700155, DOI 10.1016/0022-247X(83)90184-1
- Stephen M. Robinson, Stability theory for systems of inequalities. I. Linear systems, SIAM J. Numer. Anal. 12 (1975), no. 5, 754–769. MR 410521, DOI 10.1137/0712056
- Stephen M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), no. 2, 292–309. MR 1106803, DOI 10.1287/moor.16.2.292
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
Bibliographic Information
- Dinh The Luc
- Affiliation: Université d’Avignon, 33 rue Louis Pasteur, Avignon, France
- Address at time of publication: Institute of Mathematics, P. O. Box 631, Hanoi, Vietnam
- Received by editor(s): January 25, 1995
- Received by editor(s) in revised form: May 17, 1995
- Additional Notes: The author is on leave from the Institute of Mathematics, Hanoi, Vietnam
- Communicated by: Joseph S. B. Mitchell
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 555-567
- MSC (1991): Primary 52A20, 90C31
- DOI: https://doi.org/10.1090/S0002-9939-97-03507-7
- MathSciNet review: 1343711