Groups with many normal-by-finite subgroups
HTML articles powered by AMS MathViewer
- by Silvana Franciosi and Francesco de Giovanni
- Proc. Amer. Math. Soc. 125 (1997), 323-327
- DOI: https://doi.org/10.1090/S0002-9939-97-03539-9
- PDF | Request permission
Abstract:
A subgroup $H$ of a group $G$ is said to be normal-by-finite if the core $H_G$ of $H$ in $G$ has finite index in $H$. In this article groups satisfying the minimal condition on subgroups which are not normal-by-finite and groups with finitely many conjugacy classes of subgroups which are not normal-by-finite are characterized.References
- Bernhard Amberg, Silvana Franciosi, and Francesco de Giovanni, Products of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. Oxford Science Publications. MR 1211633
- R. Brandl, S. Franciosi and F. de Giovanni, Groups with finitely many conjugacy classes of non-normal subgroups, Proc. Roy. Irish Acad. Sect. A 95 (1995), 17–27.
- J. T. Buckley, John C. Lennox, B. H. Neumann, Howard Smith, and James Wiegold, Groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A 59 (1995), no. 3, 384–398. MR 1355229
- S. Franciosi and F. de Giovanni, Groups satisfying the minimal condition of non-subnormal subgroups, Proceedings of “Infinite Groups 1994”, de Gruyter, Berlin, 63–72.
- S. Franciosi and F. de Giovanni, Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of “Groups-Korea 1994”, de Gruyter, Berlin, 107–118.
- Silvana Franciosi, Francesco de Giovanni, and Martin L. Newell, Groups whose subnormal subgroups are normal-by-finite, Comm. Algebra 23 (1995), no. 14, 5483–5497. MR 1363617, DOI 10.1080/00927879508825546
- Richard E. Phillips and John S. Wilson, On certain minimal conditions for infinite groups, J. Algebra 51 (1978), no. 1, 41–68. MR 491955, DOI 10.1016/0021-8693(78)90134-5
- F. E. Ulrich, The problem of type for a certain class of Riemann surfaces, Duke Math. J. 5 (1939), 567–589. MR 48
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- H. Smith and J. Wiegold, Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A 60 (1996), 222–227.
- Z. P. Dienes, Canonic elements in the higher classes of Borel sets, J. London Math. Soc. 14 (1939), 169–175. MR 44, DOI 10.1112/jlms/s1-14.3.169
Bibliographic Information
- Silvana Franciosi
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Napoli, Italy
- Francesco de Giovanni
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Napoli, Italy
- Email: degiova@matna2.dma.unina.it
- Received by editor(s): May 11, 1995
- Communicated by: Ronald M. Solomon
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 323-327
- MSC (1991): Primary 20F22
- DOI: https://doi.org/10.1090/S0002-9939-97-03539-9
- MathSciNet review: 1346971