## Convolution of a measure with itself and a restriction theorem

HTML articles powered by AMS MathViewer

- by Jong-Guk Bak and David McMichael
- Proc. Amer. Math. Soc.
**125**(1997), 463-470 - DOI: https://doi.org/10.1090/S0002-9939-97-03569-7
- PDF | Request permission

## Abstract:

Let $S_{k}=\left \{ (y,|y|^{k})\colon y \in \mathbf {R}^{n-1} \right \} \subset \mathbf {R}^{n}$ and $\sigma$ be the measure defined by $\langle \sigma , \phi \rangle = \int _{\mathbf {R}^{n-1}}\phi (y, |y|^{k}) dy$. Let $\sigma _{P}$ denote the measure obtained by restricting $\sigma$ to the set $P=[0,\infty )^{n-1}$. We prove estimates on $\sigma _{P}*\sigma _{P}$. As a corollary we obtain results on the restriction to $S_{k} \subset \mathbf {R}^{3}$ of the Fourier transform of functions on $\mathbf {R}^{3}$ for $k\in \mathbf {R}$, $2<k<6$.## References

- J.-G. Bak,
*Sharp convolution estimates for measures on flat surfaces*, J. Math. Anal. Appl.**193**(1995), 756–771. - J. Bourgain,
*Besicovitch type maximal operators and applications to Fourier analysis*, Geom. Funct. Anal.**1**(1991), no. 2, 147–187. MR**1097257**, DOI 10.1007/BF01896376 - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325** - Charles Fefferman,
*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9–36. MR**257819**, DOI 10.1007/BF02394567 - I. M. Gel’fand and G. E. Shilov,
*Generalized functions. Vol. I: Properties and operations*, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR**0166596** - Lars Hörmander,
*Oscillatory integrals and multipliers on $FL^{p}$*, Ark. Mat.**11**(1973), 1–11. MR**340924**, DOI 10.1007/BF02388505 - Richard O’Neil,
*Convolution operators and $L(p,\,q)$ spaces*, Duke Math. J.**30**(1963), 129–142. MR**146673** - Christopher D. Sogge,
*A sharp restriction theorem for degenerate curves in $\textbf {R}^2$*, Amer. J. Math.**109**(1987), no. 2, 223–228. MR**882421**, DOI 10.2307/2374572 - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972** - Robert S. Strichartz,
*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**512086** - Peter A. Tomas,
*Restriction theorems for the Fourier transform*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR**545245** - A. Zygmund,
*On Fourier coefficients and transforms of functions of two variables*, Studia Math.**50**(1974), 189–201. MR**387950**, DOI 10.4064/sm-50-2-189-201

## Bibliographic Information

**Jong-Guk Bak**- Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea
- Email: bak@euclid.postech.ac.kr
**David McMichael**- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
- Received by editor(s): April 13, 1995
- Received by editor(s) in revised form: August 10, 1995
- Additional Notes: The first author was supported in part by a grant from TGRC–KOSEF of Korea.
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 463-470 - MSC (1991): Primary 42B10
- DOI: https://doi.org/10.1090/S0002-9939-97-03569-7
- MathSciNet review: 1350932