Smooth exhaustion functions in convex domains
HTML articles powered by AMS MathViewer
- by Zbigniew Blocki
- Proc. Amer. Math. Soc. 125 (1997), 477-484
- DOI: https://doi.org/10.1090/S0002-9939-97-03571-5
- PDF | Request permission
Abstract:
We show that in every bounded convex domain in $\mathbb R^n$ there exists a smooth convex exhaustion function $\psi$ such that the product of all eigenvalues of the matrix $(\partial ^2\psi /\partial x_j\partial x_k)$ is $\ge 1$. Moreover, if the domain is strictly convex, then $\psi$ can be chosen so that every eigenvalue is $\ge 1$.References
- Z. Błocki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa (to appear).
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, DOI 10.1002/cpa.3160370306
- Bernard Gaveau, Méthodes de contrôle optimal en analyse complexe. I. Résolution d’équations de Monge Ampère, J. Functional Analysis 25 (1977), no. 4, 391–411 (French). MR 0457783, DOI 10.1016/0022-1236(77)90046-5
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- Norberto Kerzman and Jean-Pierre Rosay, Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut, Math. Ann. 257 (1981), no. 2, 171–184 (French). MR 634460, DOI 10.1007/BF01458282
- Jeffrey Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), no. 2, 345–364. MR 454331, DOI 10.1216/RMJ-1977-7-2-345
- Rolf Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286 (German). MR 222334, DOI 10.1007/BF02063212
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299–319 (French). MR 894582, DOI 10.1215/S0012-7094-87-05516-5
Bibliographic Information
- Zbigniew Blocki
- Affiliation: Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland
- Email: blocki@im.uj.edu.pl
- Received by editor(s): March 27, 1995
- Received by editor(s) in revised form: August 14, 1995
- Additional Notes: The author was partially supported by KBN Grant No. 2 PO3A 058 09.
- Communicated by: Jeffrey B. Rauch
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 477-484
- MSC (1991): Primary 26B25; Secondary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-97-03571-5
- MathSciNet review: 1350934