Local Jordan *-derivations of standard operator algebras
HTML articles powered by AMS MathViewer
- by Lajos Molnár and Peter Semrl
- Proc. Amer. Math. Soc. 125 (1997), 447-454
- DOI: https://doi.org/10.1090/S0002-9939-97-03594-6
- PDF | Request permission
Abstract:
We prove that on standard operator algebras every local Jordan $^*$-derivation is a Jordan $^*$-derivation.References
- Matej Brešar and Peter emrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), no. 3, 483–496. MR 1222512, DOI 10.4153/CJM-1993-025-4
- M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101–108.
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 0350442, DOI 10.1016/0022-1236(73)90080-3
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 95864, DOI 10.1090/S0002-9939-1957-0095864-2
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073. MR 239419, DOI 10.2307/2373290
- Richard V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. MR 1051316, DOI 10.1016/0021-8693(90)90095-6
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
- L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1–7.
- Peter emrl, Quadratic functionals and Jordan $*$-derivations, Studia Math. 97 (1991), no. 3, 157–165. MR 1100685, DOI 10.4064/sm-97-3-157-165
- Peter emrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1105–1113. MR 1158008, DOI 10.1090/S0002-9939-1993-1158008-3
- Peter emrl, Jordan $*$-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), no. 2, 515–518. MR 1186136, DOI 10.1090/S0002-9939-1994-1186136-6
Bibliographic Information
- Lajos Molnár
- Affiliation: Institute of Mathematics, Lajos Kossuth University, H-4010 Debrecen, P.O.Box 12, Hungary
- Email: molnarl@math.klte.hu
- Peter Semrl
- Affiliation: Faculty of Technical Sciences, University of Maribor, Smetanova 17, P.O.Box 224, 62000 Maribor, Slovenia
- Email: peter.semrl@uni-lj.si
- Received by editor(s): August 4, 1995
- Additional Notes: The first author was partially supported by the Hungarian National Research Science Foundation, and the second author was supported by a grant from the Ministry of Science and Technology of Slovenia
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 447-454
- MSC (1991): Primary 47B47, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-97-03594-6
- MathSciNet review: 1350958