On a new condition for strictly positive definite functions on spheres
HTML articles powered by AMS MathViewer
- by Michael Schreiner
- Proc. Amer. Math. Soc. 125 (1997), 531-539
- DOI: https://doi.org/10.1090/S0002-9939-97-03634-4
- PDF | Request permission
Abstract:
Recently, Xu and Cheney (1992) have proved that if all the Legendre coefficients of a zonal function defined on a sphere are positive then the function is strictly positive definite. It will be shown in this paper that, even if finitely many of the Legendre coefficients are zero, the strict positive definiteness can be assured. The results are based on approximation properties of singular integrals, and provide also a completely different proof of the results of Xu and Cheney.References
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- W. Freeden, T. Gervens, M. Schreiner, Tensor Spherical Harmonics and Tensor Spherical Splines, Manuscr. Geod. 19 (1994), 70–100
- T. Gronwall, On the Degree of Convergence of Laplace Series, Trans. Amer. Math. Soc., 15 (1914), 1-30
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 0199449
- Hans Sünkel (ed.), Mathematical and numerical techniques in physical geodesy, Lecture Notes in Earth Sciences, vol. 7, Springer-Verlag, Berlin, 1986. Papers from the Fourth International Summer School held in Admont, August 25–September 5, 1986. MR 944972, DOI 10.1007/BFb0010130
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- M. Schreiner, Tensor Spherical Harmonics and Their Application in Satellite Gradiometry, PhD-Thesis, University of Kaiserslautern, Geomathematics Group, 1994
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
- Yuan Xu and E. W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992), no. 4, 977–981. MR 1096214, DOI 10.1090/S0002-9939-1992-1096214-6
Bibliographic Information
- Michael Schreiner
- Affiliation: University of Kaiserslautern, Laboratory of Technomathematics, Geomathematics Group, P.O. Box 30 49, 67653 Kaiserslautern, Germany
- Email: schreiner@mathematik.uni-kl.de
- Received by editor(s): August 29, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 531-539
- MSC (1991): Primary 43A35, 43A90, 42A82, 41A05
- DOI: https://doi.org/10.1090/S0002-9939-97-03634-4
- MathSciNet review: 1353398