CONGRUENCES ON "CHARACTER" VALUES OF PERMUTATION SUMMANDS

XIANGYONG WANG

(Communicated by Ronald M. Solomon)

Abstract. A class of congruences on "character" values Φ_L of a permutation summand L are exhibited, from which follows the connectedness of the prime ideal spectrum of the Grothendieck ring of permutation summands.

Let G be a finite group and A the ring of integers in a number field K. An AG-lattice is called a permutation lattice if it has an A-basis, necessarily finite, which is permuted by the action of G. It will be called a permutation summand (for G over A), if it is a direct summand, as AG-module, of a permutation lattice.

The Grothendieck ring $\Omega_A(G)$ of the category of all permutation summands for G over A has been studied in [3], via a sort of numerical character Φ_L of a permutation summand L. The construction of Φ_L is reviewed in the first paragraph of the proof below.

In this note we exhibit a class of congruences on the values of Φ_L which are strong enough to imply the connectedness of the prime ideal spectrum of $\Omega_A(G)$.

The corresponding result for the character ring $R_K(G)$ was established in [2], where Lemma 7 gives analogous congruences on character values. For the Burnside ring $\Omega(G)$ of finite G-sets, the connectedness fails [1], because there are too few congruences on the number of fixed points of G-sets.

The function Φ_L takes values in the ring A' of integers of some sufficiently large number field, for instance $K(\zeta|G|)$, and is defined on triples (H, b, p') of G over A. Here p' is a non-zero prime ideal of A' so that if p is the unique prime number in p' then H is a p-hypoelementary subgroup of G and b is a generator of $H/O_p(H)$ where $O_p(H)$ is the largest normal p-subgroup of H.

Congruences. For any prime number q, we have

$\Phi_L(H, b, p') \equiv \Phi_L(O^q(H), b_q, p') \mod q'$

where $O^q(H)$ is the smallest normal subgroup of H with $H/O^q(H)$ a q-group, b_q is the q'-part of the element b, and q' is any prime ideal above q.

Proof. Notations are consistent with those used in [3]. Let $i_{p'}: A' \to A'_p$ be the inclusion of A' in its completion at p', and let $p = p' \cap A$. Denote the A_pG-module $A_p \otimes A L$ by M for simplicity. Since H is p-hypoelementary, $O_p(H)$ is the normal p-Sylow subgroup of H. Decompose the restriction M_H of M to H as $M_H \simeq M' \oplus M''$, where the vertices of the indecomposable A_pH-summands of M' are $O_p(H)$, and

Received by the editors September 7, 1995.

1991 Mathematics Subject Classification. Primary 20C10; Secondary 19A22, 20C15.

©1997 American Mathematical Society
the vertices of M'' are proper subgroups of $O_p(H)$. By the definition of Φ_L (cf. [3] (2.1)), we have

$$i_p'\Phi_L(H, b, p') = \text{trace of } b \text{ acting on } M'.$$

If the action of b on M' has eigenvalues $\lambda_1, ..., \lambda_r$ in A_q', then $\Phi_L(H, b, p') = \sum_i \xi_i$, where ξ_i is the preimage of λ_i under i_p'. We will call this the pretrace of b on M' for convenience.

Denote $O_p(O^q(H)) = O_p(H) \cap O^q(H)$ by Q, and further decompose M'' as $M'' \cong M''_1 \oplus M''_2$, where the vertices of the indecomposable A_pH-summands of M''_1 contain Q and those of M''_2 do not.

Since every indecomposable A_pH-summand of $M' \oplus M''$ has vertex P between Q and $O_p(H)$ from the above decomposition of M_H, it is an A_pH-summand of $\text{ind}_Q^{O^q(H)}(A_p)$ by [3](1.1). Its restriction to $O^q(H)$ is then an $A_pO^q(H)$-summand of $\text{ind}_Q^{O^q(H)}(A_p)$ by Mackey decomposition, hence has vertex Q. Every indecomposable summand of the restriction $(M''_2)_{O^q(H)}$ has vertex properly contained in Q as the vertex can only drop after restriction. Therefore from the above decomposition of M_H, the restriction of M to $O^q(H)$ has the decomposition $M_{O^q(H)} \cong (M' \oplus M''_1)_{O^q(H)} \oplus (M''_2)_{O^q(H)}$, where the vertices of the indecomposable $A_pO^q(H)$-summands of $(M' \oplus M''_1)_{O^q(H)}$ are Q, and the vertices of $(M''_2)_{O^q(H)}$ are proper subgroups of Q. Again by the definition of Φ_L, applied to $(O^q(H), b_{q'}, p')$, we obtain

$$\Phi_L(O^q(H), b_{q'}, p') = \text{pretrace of } b_{q'} \text{ acting on } M' \oplus M''_1.$$

Now the congruence follows from

Claim. i) pretrace of b on $M' \equiv \text{pretrace of } b_{q'} \text{ on } M' \mod q'$;

ii) pretrace of $b_{q'}$ on $M''_1 \equiv 0 \mod q'$.

Proof of Claim. i) If m is a sufficiently large power of q, we have $b^m = b_{q'}^m$, and the eigenvalues of b^m on M' have preimages $\xi_1^m, ..., \xi_r^m$ under i_p'. Hence

$$(\text{pretrace of } b)^m = (\sum_i \xi_i)^m \equiv \sum_i \xi_i^m = \text{pretrace of } b^m \mod q'$$

and, for the same reason,

$$\text{(pretrace of } b_{q'})^m \equiv \text{pretrace of } b_{q'}^m \mod q'.$$

Combining gives

$$(\text{pretrace of } b)^m \equiv (\text{pretrace of } b_{q'})^m \mod q'$$

from which i) follows.

ii) We may assume $M''_1 \neq 0$. Then $Q \subseteq O_p(H)$, hence p must be equal to q, and $H/Q = (O_p(H)/Q) \times (O^q(H)/Q)$ is nilpotent.

Since Q acts trivially on M''_1 by [3](1.1), M''_1 can be considered as an A_pH/Q-module. By [4]§2, this module has the structure

$$M''_1 \cong \sum_j N_j \otimes_{A_p} \text{ind}_{D_j}^{O^q(H)/Q}(A_p)$$

for some $A_pO^q(H)/Q$-lattices N_j and some p-subgroups D_j of $O_p(H)/Q$. These D_j are actually the vertices of M''_1, hence are properly contained in $O_p(H)/Q$.\[\text{\(\square\)}\]
CONSEQUENCES ON “CHARACTER” VALUES OF PERMUTATION SUMMANDS 395

If the eigenvalues of \(b_q \) on \(N_j \) have preimages \(\xi_1^{(j)}, \ldots, \xi_{r_j}^{(j)} \) under \(i_p \), then the eigenvalues of \(b_q' \) on \(N_j \otimes_A \mu_1^{O_p(H)/Q} (A_p) \) have preimages \(\xi_1^{(j)}, \ldots, \xi_{r_j}^{(j)} \) each repeated \(|O_p(H)/Q : D_j| \) times. Thus

\[
\text{pretrace of } b_q' \text{ on } M_1'' = \sum_j |O_p(H)/Q : D_j| \sum_i \xi_i^{(j)} \equiv 0 \mod pA',
\]
as required. This completes the proof of the claim, hence of the congruence. \(\square \)

We want to examine the prime ideal spectrum \(\text{Spec}(\Omega_A(G)) \) of the commutative ring \(\Omega_A(G) \). Let \(T_G(A) \) be the set of triples \((H, b, p')\), and \((A')^T_G(A)\) the ring of all maps on triples with values in \(A' \). Since the ring homomorphism \(\Phi : \Omega_A(G) \to \Omega_A(G) \) has a nilpotent kernel \([3]\), and \(\Omega_A(G) \) is a subring of \((A')^T_G(A)\) with finite \(\mathbb{Z}\)-rank, it induces the surjection

\[
\text{Spec}((A')^T_G(A)) \xrightarrow{\text{going-down}} \text{Spec}(\text{im}\Phi) \xrightarrow{\Phi^{-1}} \text{Spec}(\Omega_A(G)).
\]

\textbf{Lemma.} With above notation, then

1. \(P_{0,T} \subset P_{q',T}; \)
2. If \(q' \) is a maximal ideal of \(A' \) above a prime number \(q \) and \(T = (H, b, p') \) is a triple, we denote the triple \((O^q(H), b_{q'}, p')\) by \(T^q \). Then \(P_{q',T} \cap T^q = P_{q',T^q}. \)

\textbf{Proof.} (1) is clear.

(2) By the congruences we have \(\Phi_x(T) \equiv T^q \mod q' \) \(x \in \Omega_A(G) \). Thus \(x \in P_{q',T} \iff \Phi_x(T) \in q' \iff \Phi_x(T^q) \in q' \iff x \in P_{q',T^q}. \) \(\square \)

\textbf{Corollary.} \(\text{Spec}(\Omega_A(G)) \) is connected.

\textbf{Proof.} Let \(C \) be the connected component of the point \(P_{0,(1)} \) in \(\text{Spec}(\Omega_A(G)) \) where \((1) \) is the cyclic triple (cf. [3] §3) of the trivial subgroup. By (1) of the Lemma, the closure \(\overline{P_{0,T}} \) contains \(P_{q',T} \) for all \(q' \). So it suffices to show that \(C \) contains \(\overline{P_{0,T}} \) for every triple \(T \). We proceed by induction on the order of the subgroup \(H \) appearing in the triple \(T = (H, b, p') \).

If \(H \) is trivial this follows by the definition of \(C \) so we suppose \(H \) is non-trivial. Choose a prime number \(q \) so \(O^q(H) \subseteq H \), and a prime ideal \(q' \) of \(A' \) containing \(q \). By (2) and (1) of the Lemma we have \(P_{q',T} = P_{q',T^q} \), hence \(\overline{P_{0,T}} \cap \overline{P_{0,T^q}} \) is not empty, and \(\overline{P_{0,T}} \cup \overline{P_{0,T^q}} \) is connected. But \(\overline{P_{0,T^q}} \subseteq C \) by the induction hypothesis, and therefore \(\overline{P_{0,T}} \subseteq C \). \(\square \)

\textbf{Acknowledgement}

I thank Alfred Weiss for his encouragement and interest in this work.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REFERENCES

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Current address: Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4

E-mail address: xywang@cs.toronto.edu