Generalized upper and lower solution method for the forced Duffing equation
HTML articles powered by AMS MathViewer
- by Chengwen Wang
- Proc. Amer. Math. Soc. 125 (1997), 397-406
- DOI: https://doi.org/10.1090/S0002-9939-97-03947-6
- PDF | Request permission
Abstract:
This paper gives the generalized upper and lower solution method for the forced Duffing equation \[ x '' + k x ’ + f (t,x) = 0 ,\] and obtains existence theorems for $T$-periodic solutions, where $f$ is a Carathéo- dory function. Our results generalize or extend some famous results obtained by Mawhin(1985), Habets(1990), Nkashama(1989) and Nieto(1990).References
- Robert E. Gaines and Jean L. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR 0637067
- Patrick Habets and Gerhard Metzen, Existence of periodic solutions of Duffing equations, J. Differential Equations 78 (1989), no. 1, 1–32. MR 986151, DOI 10.1016/0022-0396(89)90073-9
- Patrick Habets and Luis Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1035–1044. MR 1009991, DOI 10.1090/S0002-9939-1990-1009991-5
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- Mawhin, J., Points fixes, ponits critiques et probléme aux limites. Semin. Math. Sup. no. 92. Press Univ. de Montreál, 1985.
- M. N. Nkashama, A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations, J. Math. Anal. Appl. 140 (1989), no. 2, 381–395. MR 1001864, DOI 10.1016/0022-247X(89)90072-3
- Alberto Cabada and Juan J. Nieto, A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), no. 1, 181–189. MR 1069454, DOI 10.1016/0022-247X(90)90249-F
Bibliographic Information
- Chengwen Wang
- Affiliation: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China; Department of Mathematics & Computer Science, Rutgers University, Newark, New Jersey 07102
- Email: chengwen@pegasus.rutgers.edu
- Received by editor(s): November 16, 1994
- Communicated by: Hal L. Smith
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 397-406
- MSC (1991): Primary 34B15, 34C25
- DOI: https://doi.org/10.1090/S0002-9939-97-03947-6
- MathSciNet review: 1403119