The index number of an $R$-space: An extension of a result of M.Takeuchi’s
HTML articles powered by AMS MathViewer
- by Cristián U. Sánchez
- Proc. Amer. Math. Soc. 125 (1997), 893-900
- DOI: https://doi.org/10.1090/S0002-9939-97-03517-X
- PDF | Request permission
Abstract:
M. Takeuchi proved the following nice result: The “two-number” of a symmetric $R$-space is equal to the sum of the Betti numbers of the space with coefficients in $Z_2$. In the present paper an extension of this result is given for general $R$-spaces.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Bang-Yen Chen and Tadashi Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), no. 1, 273–297. MR 946443, DOI 10.1090/S0002-9947-1988-0946443-8
- Dirk Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), no. 1, 81–93. MR 565140, DOI 10.1007/BF01359868
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- J. Alfredo Jiménez, Existence of Hermitian $n$-symmetric spaces and of noncommutative naturally reductive spaces, Math. Z. 196 (1987), no. 2, 133–139. MR 910822, DOI 10.1007/BF01163651
- Oldřich Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, vol. 805, Springer-Verlag, Berlin-New York, 1980. MR 579184, DOI 10.1007/BFb0103324
- G. L. Luke (ed.), Representation theory of Lie groups, Cambridge University Press, Cambridge, 1979. MR 568880
- Cristián U. Sánchez, The invariant of Chen-Nagano on flag manifolds, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1237–1242. MR 1163336, DOI 10.1090/S0002-9939-1993-1163336-1
- Cristián U. Sánchez, The tightness of certain almost complex submanifolds, Proc. Amer. Math. Soc. 110 (1990), no. 3, 807–811. MR 1025282, DOI 10.1090/S0002-9939-1990-1025282-0
- Masaru Takeuchi, Two-number of symmetric $R$-spaces, Nagoya Math. J. 115 (1989), 43–46. MR 1018081, DOI 10.1017/S0027763000001513
- Masaru Takeuchi and Shoshichi Kobayashi, Minimal imbeddings of $R$-spaces, J. Differential Geometry 2 (1968), 203–215. MR 239007
- Joseph A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237. MR 251246, DOI 10.1090/S0002-9904-1969-12359-1
Bibliographic Information
- Cristián U. Sánchez
- Affiliation: Fa. M.A.F., Universidad de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
- Email: csanchez@mate.uncor.edu
- Received by editor(s): August 5, 1994
- Received by editor(s) in revised form: June 12, 1995
- Additional Notes: The author’s research was partially supported by CONICET and CONICOR, Argentina
- Communicated by: Roe W. Goodman
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 893-900
- MSC (1991): Primary 53C30; Secondary 53C35
- DOI: https://doi.org/10.1090/S0002-9939-97-03517-X
- MathSciNet review: 1343722