Boundary values of holomorphic semigroups
HTML articles powered by AMS MathViewer
- by Wolfgang Arendt, Omar El Mennaoui and Matthias Hieber
- Proc. Amer. Math. Soc. 125 (1997), 635-647
- DOI: https://doi.org/10.1090/S0002-9939-97-03529-6
- PDF | Request permission
Abstract:
The concept of boundary values of holomorphic semigroups is used to give a new proof of a result due to Hörmander, saying that the operator $i\Delta$ generates a $C_0$-semigroup on $L^p(\mathbb R^N)$ if and only if $p=2$. Using a recent result on Laplace transforms by Prüss one obtains by this theory also a new proof of the classical characterization theorem of holomorphic semigroups.References
- Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385, DOI 10.1007/978-3-0348-9221-6
- Wolfgang Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327–352. MR 920499, DOI 10.1007/BF02774144
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- Khristo Boyadzhiev and Ralph deLaubenfels, Boundary values of holomorphic semigroups, Proc. Amer. Math. Soc. 118 (1993), no. 1, 113–118. MR 1128725, DOI 10.1090/S0002-9939-1993-1128725-X
- Ronald R. Coifman and Guido Weiss, Some examples of transference methods in harmonic analysis, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 33–45. MR 0481929
- John B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Heidelberg, 1973. MR 0447532, DOI 10.1007/978-1-4615-9972-2
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- Ralph deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Mathematics, vol. 1570, Springer-Verlag, Berlin, 1994. MR 1290783, DOI 10.1007/BFb0073401
- Giovanni Dore and Alberto Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), no. 2, 189–201. MR 910825, DOI 10.1007/BF01163654
- O. El Mennaoui, Trace des semigroupes holomorphes singuliers a l’origine et comportement asymptotique, Ph. D. Thesis, Besançon, (1992).
- O. El-Mennaoui, Holomorphic continuations of $C_0$-groups on Banach spaces, Semigroup Forum 49 (1994), no. 1, 89–97. MR 1272866, DOI 10.1007/BF02573474
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Matthias Hieber, Integrated semigroups and differential operators on $L^p$ spaces, Math. Ann. 291 (1991), no. 1, 1–16. MR 1125004, DOI 10.1007/BF01445187
- Matthias Hieber, $L^p$ spectra of pseudodifferential operators generating integrated semigroups, Trans. Amer. Math. Soc. 347 (1995), no. 10, 4023–4035. MR 1303120, DOI 10.1090/S0002-9947-1995-1303120-5
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- M. Jazar, Sur la théorie de la distribution spectrale et applications aux problèmes de Cauchy, Ph. D. Thesis, Poitiers, (1991).
- M. Jazar, Fractional powers of momentum of a spectral distribution, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1805–1813. MR 1242090, DOI 10.1090/S0002-9939-1995-1242090-0
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Hikosaburo Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285–346. MR 201985, DOI 10.2140/pjm.1966.19.285
- J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), no. 3, 108–115. MR 684025, DOI 10.1007/BF03024240
- R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lecture Notes in Math. 1184, Berlin, 1985.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- Jan Prüss and Hermann Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), no. 3, 429–452. MR 1038710, DOI 10.1007/BF02570748
Bibliographic Information
- Wolfgang Arendt
- Affiliation: Mathematik V, Universität Ulm, D-89069 Ulm, Germany
- MR Author ID: 26945
- Omar El Mennaoui
- Affiliation: Equipe de Mathématiques, Faculté des Sciences, Université Ibnon Zohr, Agadir, Morocco
- Matthias Hieber
- Affiliation: Mathematisches Institut I, Universität Karlsruhe, Englerstraße 2, D-76128 Karlsruhe, Germany
- MR Author ID: 270487
- Received by editor(s): April 27, 1995
- Received by editor(s) in revised form: July 7, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 635-647
- MSC (1991): Primary 47D06, 47F05
- DOI: https://doi.org/10.1090/S0002-9939-97-03529-6
- MathSciNet review: 1346961
Dedicated: Dedicated to Professor H. H. Schaefer on the Occasion of his 70th Birthday