Shift-invariant spaces on the real line
HTML articles powered by AMS MathViewer
- by Rong-Qing Jia
- Proc. Amer. Math. Soc. 125 (1997), 785-793
- DOI: https://doi.org/10.1090/S0002-9939-97-03586-7
- PDF | Request permission
Abstract:
We investigate the structure of shift-invariant spaces generated by a finite number of compactly supported functions in $L_p(\mathbb {R})$ $(1\le p\le \infty )$. Based on a study of linear independence of the shifts of the generators, we characterize such shift-invariant spaces in terms of the semi-convolutions of the generators with sequences on $\mathbb {Z}$. Moreover, we show that such a shift-invariant space provides $L_p$-approximation order $k$ if and only if it contains all polynomials of degree less than $k$.References
- Asher Ben-Artzi and Amos Ron, On the integer translates of a compactly supported function: dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990), no.ย 6, 1550โ1562. MR 1075591, DOI 10.1137/0521085
- C. de Boor and R. DeVore, Partitions of unity and approximation, Proc. Amer. Math. Soc. 93 (1985), no.ย 4, 705โ709. MR 776207, DOI 10.1090/S0002-9939-1985-0776207-2
- Carl de Boor, Ronald A. DeVore, and Amos Ron, Approximation from shift-invariant subspaces of $L_2(\mathbf R^d)$, Trans. Amer. Math. Soc. 341 (1994), no.ย 2, 787โ806. MR 1195508, DOI 10.1090/S0002-9947-1994-1195508-X
- Carl de Boor, Ronald A. DeVore, and Amos Ron, The structure of finitely generated shift-invariant spaces in $L_2(\textbf {R}^d)$, J. Funct. Anal. 119 (1994), no.ย 1, 37โ78. MR 1255273, DOI 10.1006/jfan.1994.1003
- C. de Boor and K. Hรถllig, Approximation order from bivariate $C^{1}$-cubics: a counterexample, Proc. Amer. Math. Soc. 87 (1983), no.ย 4, 649โ655. MR 687634, DOI 10.1090/S0002-9939-1983-0687634-4
- C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth bivariate PP functions, J. Approx. Theory 72 (1993), no.ย 1, 24โ33. MR 1198370, DOI 10.1006/jath.1993.1003
- Rong Qing Jia, A characterization of the approximation order of translation invariant spaces of functions, Proc. Amer. Math. Soc. 111 (1991), no.ย 1, 61โ70. MR 1010801, DOI 10.1090/S0002-9939-1991-1010801-1
- โ, The Toeplitz theorem and its applications to approximation theory and linear PDEโs, Trans. Amer. Math. Soc. 347 (1995), 2585โ2594.
- Rong Qing Jia and Junjiang Lei, Approximation by multi-integer translates of functions having global support, J. Approx. Theory 72 (1993), no.ย 1, 2โ23. MR 1198369, DOI 10.1006/jath.1993.1002
- Rong Qing Jia and Charles A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), no.ย 1, 69โ85. MR 1200188, DOI 10.1017/S0013091500005903
- Pierre-Jean Laurent and Larry L. Schumaker (eds.), Curves and surfaces, Academic Press, Inc., Boston, MA, 1991. Papers from the International Conference held in Chamonix-Mont-Blanc, June 21โ27, 1990. MR 1123709
- Amos Ron, Factorization theorems for univariate splines on regular grids, Israel J. Math. 70 (1990), no.ย 1, 48โ68. MR 1057267, DOI 10.1007/BF02807218
- Amos Ron, A characterization of the approximation order of multivariate spline spaces, Studia Math. 98 (1991), no.ย 1, 73โ90. MR 1110099, DOI 10.4064/sm-98-1-73-90
- Martin Schechter, Principles of functional analysis, Academic Press, New York-London, 1971. MR 0445263
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195โ206. MR 8, DOI 10.1017/S0370164600012281
- G. Strang and G. Fix, A Fourier analysis of the finite-element variational method, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), C.I.M.E. (1973), 793โ840.
- Kang Zhao, Global linear independence and finitely supported dual basis, SIAM J. Math. Anal. 23 (1992), no.ย 5, 1352โ1355. MR 1177795, DOI 10.1137/0523077
- Kang Zhao, Approximation from locally finite-dimensional shift-invariant spaces, Proc. Amer. Math. Soc. 124 (1996), no.ย 6, 1857โ1867. MR 1307577, DOI 10.1090/S0002-9939-96-03253-4
Bibliographic Information
- Rong-Qing Jia
- Affiliation: Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1
- Email: jia@xihu.math.ualberta.ca
- Received by editor(s): April 13, 1995
- Received by editor(s) in revised form: August 10, 1995
- Additional Notes: The author was supported in part by NSERC Canada under Grant OGP 121336
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 785-793
- MSC (1991): Primary 41A25, 41A15, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-97-03586-7
- MathSciNet review: 1350950