A note on Fischer-Marsden’s conjecture
HTML articles powered by AMS MathViewer
- by Ying Shen
- Proc. Amer. Math. Soc. 125 (1997), 901-905
- DOI: https://doi.org/10.1090/S0002-9939-97-03635-6
- PDF | Request permission
Abstract:
In this paper, we borrowed some ideas from general relativity and find a Robinson-type identity for the overdetermined system of partial differential equations in the Fischer-Marsden conjecture. We proved that if there is a nontrivial solution for such an overdetermined system on a 3-dimensional, closed manifold with positive scalar curvature, then the manifold contains a totally geodesic 2-sphere.References
- M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379–392. MR 266084, DOI 10.4310/jdg/1214429060
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Jean-Pierre Bourguignon, Une stratification de l’espace des structures riemanniennes, Compositio Math. 30 (1975), 1–41 (French). MR 418147
- Gary L. Bunting and A. K. M. Masood-ul-Alam, Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time, Gen. Relativity Gravitation 19 (1987), no. 2, 147–154. MR 876598, DOI 10.1007/BF00770326
- John A. Flueck and James F. Korsh, A generalized approach to maximum likelihood paired comparison ranking, Ann. Statist. 3 (1975), no. 4, 846–861. MR 400506
- W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967), 1776–1779.
- Osamu Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665–675. MR 669275, DOI 10.2969/jmsj/03440665
- H. P. Künzle, On the spherical symmetry of a static perfect fluid, Comm. Math. Phys. 20 (1971), 85–100. MR 275833, DOI 10.1007/BF01646528
- Jacques Lafontaine, Sur la géométrie d’une généralisation de l’équation différentielle d’Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63–72 (French). MR 700048
- L. Lindblom, Some properties of static general relativistic stellar models, J. Math. Phys. 21, No. 6 (1980), 1455–1459.
- A. K. M. Masood-ul-Alam, On spherical symmetry of static perfect fluid spacetimes and the positive-mass theorem, Classical Quantum Gravity 4 (1987), no. 3, 625–633. MR 884598, DOI 10.1088/0264-9381/4/3/020
- Morio Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR 142086, DOI 10.2969/jmsj/01430333
- D. C. Robinson, A simple proof of the generalization of Israel’s Theorem, General Relativity and Gravitation 8, No. 8 (1977), 695–698.
Bibliographic Information
- Ying Shen
- Affiliation: Department of Mathematics, Texas A & M University, College Station, Texas 77843
- Address at time of publication: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: yshen@math.tamu.edu, ying.shen@dartmouth.edu
- Received by editor(s): June 12, 1995
- Communicated by: Peter Li
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 901-905
- MSC (1991): Primary 53C21, 53C42
- DOI: https://doi.org/10.1090/S0002-9939-97-03635-6
- MathSciNet review: 1353399