## A note on Fischer-Marsden’s conjecture

HTML articles powered by AMS MathViewer

- by Ying Shen PDF
- Proc. Amer. Math. Soc.
**125**(1997), 901-905 Request permission

## Abstract:

In this paper, we borrowed some ideas from general relativity and find a Robinson-type identity for the overdetermined system of partial differential equations in the Fischer-Marsden conjecture. We proved that if there is a nontrivial solution for such an overdetermined system on a 3-dimensional, closed manifold with positive scalar curvature, then the manifold contains a totally geodesic 2-sphere.## References

- M. Berger and D. Ebin,
*Some decompositions of the space of symmetric tensors on a Riemannian manifold*, J. Differential Geometry**3**(1969), 379–392. MR**266084**, DOI 10.4310/jdg/1214429060 - Arthur L. Besse,
*Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR**867684**, DOI 10.1007/978-3-540-74311-8 - Jean-Pierre Bourguignon,
*Une stratification de l’espace des structures riemanniennes*, Compositio Math.**30**(1975), 1–41 (French). MR**418147** - Gary L. Bunting and A. K. M. Masood-ul-Alam,
*Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time*, Gen. Relativity Gravitation**19**(1987), no. 2, 147–154. MR**876598**, DOI 10.1007/BF00770326 - John A. Flueck and James F. Korsh,
*A generalized approach to maximum likelihood paired comparison ranking*, Ann. Statist.**3**(1975), no. 4, 846–861. MR**400506** - W. Israel,
*Event horizons in static vacuum space-times*, Phys. Rev.**164**(1967), 1776–1779. - Osamu Kobayashi,
*A differential equation arising from scalar curvature function*, J. Math. Soc. Japan**34**(1982), no. 4, 665–675. MR**669275**, DOI 10.2969/jmsj/03440665 - H. P. Künzle,
*On the spherical symmetry of a static perfect fluid*, Comm. Math. Phys.**20**(1971), 85–100. MR**275833**, DOI 10.1007/BF01646528 - Jacques Lafontaine,
*Sur la géométrie d’une généralisation de l’équation différentielle d’Obata*, J. Math. Pures Appl. (9)**62**(1983), no. 1, 63–72 (French). MR**700048** - L. Lindblom,
*Some properties of static general relativistic stellar models*, J. Math. Phys.**21**, No.**6**(1980), 1455–1459. - A. K. M. Masood-ul-Alam,
*On spherical symmetry of static perfect fluid spacetimes and the positive-mass theorem*, Classical Quantum Gravity**4**(1987), no. 3, 625–633. MR**884598**, DOI 10.1088/0264-9381/4/3/020 - Morio Obata,
*Certain conditions for a Riemannian manifold to be isometric with a sphere*, J. Math. Soc. Japan**14**(1962), 333–340. MR**142086**, DOI 10.2969/jmsj/01430333 - D. C. Robinson,
*A simple proof of the generalization of Israel’s Theorem*, General Relativity and Gravitation**8**, No.**8**(1977), 695–698.

## Additional Information

**Ying Shen**- Affiliation: Department of Mathematics, Texas A & M University, College Station, Texas 77843
- Address at time of publication: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: yshen@math.tamu.edu, ying.shen@dartmouth.edu
- Received by editor(s): June 12, 1995
- Communicated by: Peter Li
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 901-905 - MSC (1991): Primary 53C21, 53C42
- DOI: https://doi.org/10.1090/S0002-9939-97-03635-6
- MathSciNet review: 1353399