The $D$-resultant, singularities and the degree of unfaithfulness
HTML articles powered by AMS MathViewer
- by Arno van den Essen and Jie-Tai Yu
- Proc. Amer. Math. Soc. 125 (1997), 689-695
- DOI: https://doi.org/10.1090/S0002-9939-97-03639-3
- PDF | Request permission
Abstract:
We introduce the $D$-resultant of two polynomials in one variable and show how it can be used to decide if $k(f(t),g(t))=k(t),k[f(t),g(t)]=k[t]$ and to find the singularities of the curve $x=f(t),y=g(t)$. The second criterion is used to give a very short proof of a special case of the epimorphism theorem of Abhyankar and Moh.References
- Shreeram S. Abhyankar, Algebraic space curves, Séminaire de Mathématiques Supérieures, No. 43 (Été 1970), Les Presses de l’Université de Montréal, Montreal, Que., 1971. MR 0399109
- Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, RI, 1990. MR 1075991, DOI 10.1090/surv/035
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- L. Andrew Campbell and Arno van den Essen, Jacobian pairs, $D$-resultants, and automorphisms of the plane, J. Pure Appl. Algebra 104 (1995), no. 1, 9–18. MR 1359687, DOI 10.1016/0022-4049(95)00116-E
- Charles Ching-an Cheng, Takis Sakkalis, and Stuart Sui Sheng Wang, A case of the Jacobian conjecture, J. Pure Appl. Algebra 96 (1994), no. 1, 15–18. MR 1297436, DOI 10.1016/0022-4049(94)90082-5
- Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- James H. McKay and Stuart Sui Sheng Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 40 (1986), no. 3, 245–257. MR 836651, DOI 10.1016/0022-4049(86)90044-7
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- A. Seidenberg, Elements of the theory of algebraic curves, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0248139
- Jie Tai Yu, Face polynomials and inversion formula, J. Pure Appl. Algebra 78 (1992), no. 2, 213–219. MR 1161345, DOI 10.1016/0022-4049(92)90099-2
Bibliographic Information
- Arno van den Essen
- Affiliation: Department of Mathematics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
- Email: essen@sci.kun.nl
- Jie-Tai Yu
- Affiliation: Department of Mathematics, University of Hong Kong, Hong Kong
- Email: yujt@hkusua.hku.hk
- Received by editor(s): June 15, 1995
- Received by editor(s) in revised form: September 21, 1995
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 689-695
- MSC (1991): Primary 13P99
- DOI: https://doi.org/10.1090/S0002-9939-97-03639-3
- MathSciNet review: 1353403