Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Simple connectedness of projective varieties


Author: Steven Dale Cutkosky
Journal: Proc. Amer. Math. Soc. 125 (1997), 679-684
MSC (1991): Primary 14F35, 14E20
DOI: https://doi.org/10.1090/S0002-9939-97-03658-7
MathSciNet review: 1363453
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Lefschetz type theorem is proven relating the algebraic fundamental group of a smooth projective variety $X$ to the algebraic fundamental group of a subvariety set theoretically defined by $\le \dim (X)-2$ forms.


References [Enhancements On Off] (What's this?)

  • [Z] Oscar Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2) 76 (1962), 560–615. MR 141668, https://doi.org/10.2307/1970376
  • [CS] Steven Dale Cutkosky and Hema Srinivasan, Local fundamental groups of surface singularities in characteristic 𝑝, Comment. Math. Helv. 68 (1993), no. 2, 319–332. MR 1214235, https://doi.org/10.1007/BF02565822
  • [C] S.D. Cutkosky, Purity of branch locus and Lefschetz theorems, Compositio Math. 96, (1995) 173-195. CMP 95:11
  • [F] Gerd Faltings, Algebraisation of some formal vector bundles, Ann. of Math. (2) 110 (1979), no. 3, 501–514. MR 554381, https://doi.org/10.2307/1971235
  • [GM] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724
  • [EGA] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 163911
  • [SGA1] Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
  • [SGA2] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (𝑆𝐺𝐴 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. MR 0476737
  • [H] Helmut A. Hamm, Lefschetz theorems for singular varieties, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 547–557. MR 713091
  • [Ha] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [L] Gennady Lyubeznik, Étale cohomological dimension and the topology of algebraic varieties, Ann. of Math. (2) 137 (1993), no. 1, 71–128. MR 1200077, https://doi.org/10.2307/2946619
  • [M] J. P. Murre, Lectures on an introduction to Grothendieck’s theory of the fundamental group, Tata Institute of Fundamental Research, Bombay, 1967. Notes by S. Anantharaman; Tata Institute of Fundamental Research Lectures on Mathematics, No 40. MR 0302650

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14F35, 14E20

Retrieve articles in all journals with MSC (1991): 14F35, 14E20


Additional Information

Steven Dale Cutkosky
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: dale@cutkosky.math.missouri.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03658-7
Received by editor(s): September 14, 1995
Additional Notes: Partially supported by NSF
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1997 American Mathematical Society