Serre-duality for Tails$(A)$
HTML articles powered by AMS MathViewer
- by Peter Jørgensen
- Proc. Amer. Math. Soc. 125 (1997), 709-716
- DOI: https://doi.org/10.1090/S0002-9939-97-03670-8
- PDF | Request permission
Abstract:
A version of Serre-duality is proved for Artin’s non-commutative projective schemes.References
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- A. Yekutieli and J. J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc., this issue.
Bibliographic Information
- Peter Jørgensen
- Affiliation: Matematisk Institut, Københavns Universitet, Universitetsparken 5, DK–2100 København Ø, Denmark
- Email: popjoerg@math.ku.dk
- Received by editor(s): March 9, 1995
- Received by editor(s) in revised form: September 25, 1995
- Communicated by: Ken Goodearl
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 709-716
- MSC (1991): Primary 14A22, 16W50; Secondary 18E30
- DOI: https://doi.org/10.1090/S0002-9939-97-03670-8
- MathSciNet review: 1363171