## A unique continuation theorem for the Schrödinger equation with singular magnetic field

HTML articles powered by AMS MathViewer

- by Kazuhiro Kurata PDF
- Proc. Amer. Math. Soc.
**125**(1997), 853-860 Request permission

## Abstract:

We show a unique continuation theorem for the Schrödinger equation $(\frac {1}{i}\nabla -\mathbf {A})^2 u+ Vu=0$ with singular coefficients $\mathbf {A}$ and $V$.## References

- B. Barceló, C. E. Kenig, A. Ruiz, and C. D. Sogge,
*Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms*, Illinois J. Math.**32**(1988), no. 2, 230–245. MR**945861**, DOI 10.1215/ijm/1255989128 - Michael S. P. Eastham and Hubert Kalf,
*Schrödinger-type operators with continuous spectra*, Research Notes in Mathematics, vol. 65, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**667015** - Eugene B. Fabes, Nicola Garofalo, and Fang-Hua Lin,
*A partial answer to a conjecture of B. Simon concerning unique continuation*, J. Funct. Anal.**88**(1990), no. 1, 194–210. MR**1033920**, DOI 10.1016/0022-1236(90)90125-5 - Nicola Garofalo and Fang-Hua Lin,
*Monotonicity properties of variational integrals, $A_p$ weights and unique continuation*, Indiana Univ. Math. J.**35**(1986), no. 2, 245–268. MR**833393**, DOI 10.1512/iumj.1986.35.35015 - Nicola Garofalo and Fang-Hua Lin,
*Unique continuation for elliptic operators: a geometric-variational approach*, Comm. Pure Appl. Math.**40**(1987), no. 3, 347–366. MR**882069**, DOI 10.1002/cpa.3160400305 - Hubert Kalf,
*Une remarque au sujet de prolongement unique des solutions de l’équation de Schrödinger*, C. R. Acad. Sci. Paris Sér. I Math.**295**(1982), no. 10, 579–581 (French, with English summary). MR**685029** - Lars Hörmander,
*Uniqueness theorems for second order elliptic differential equations*, Comm. Partial Differential Equations**8**(1983), no. 1, 21–64. MR**686819**, DOI 10.1080/03605308308820262 - Kazuhiro Kurata,
*A unique continuation theorem for uniformly elliptic equations with strongly singular potentials*, Comm. Partial Differential Equations**18**(1993), no. 7-8, 1161–1189. MR**1233189**, DOI 10.1080/03605309308820968 - Kurata, K. Local boundedness and continuity for weak solutions of $-(\nabla - i{ \mathbf {b}})^2 u+ Vu=0$. Math. Z. (to appear).
- Christopher D. Sogge,
*Strong uniqueness theorems for second order elliptic differential equations*, Amer. J. Math.**112**(1990), no. 6, 943–984. MR**1081811**, DOI 10.2307/2374732 - Thomas H. Wolff,
*Unique continuation for $|\Delta u|\le V|\nabla u|$ and related problems*, Rev. Mat. Iberoamericana**6**(1990), no. 3-4, 155–200. MR**1125760**, DOI 10.4171/RMI/101 - T. H. Wolff,
*A property of measures in $\textbf {R}^N$ and an application to unique continuation*, Geom. Funct. Anal.**2**(1992), no. 2, 225–284. MR**1159832**, DOI 10.1007/BF01896975

## Additional Information

**Kazuhiro Kurata**- Affiliation: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03 Japan
- Email: kurata@math.metro-u.ac.jp
- Received by editor(s): April 3, 1995
- Received by editor(s) in revised form: October 3, 1995
- Communicated by: Christopher D. Sogge
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 853-860 - MSC (1991): Primary 35B60, 35J10, 35Q60
- DOI: https://doi.org/10.1090/S0002-9939-97-03672-1
- MathSciNet review: 1363173