NOT ALL JULIA SETS ARE QUASI-SELF-SIMILAR

PENTTI JÄRVI

(Communicated by Albert Baernstein II)

Abstract. We show that there exist rational functions, whose Julia set fails to be quasi-self-similar.

1.

One of the conspicuous features of the Julia sets of rational functions is that small parts of them look very much like some large parts. Sullivan has introduced a proper concept to describe the situation: the quasi-self-similarity. He also established the quasi-self-similarity of the Julia sets of all hyperbolic rational functions [1, Theorem 8.6], [3, Theorem 7], [8, p. 742]. One of the open problems listed at the end of [3] asks, whether the same is true of all rational functions of degree \(\geq 2 \). The purpose of the present note is to show that this is not the case.

2.

Let \(c \in (0, 1] \). A set \(E \) in the euclidean \(n \)-space \(\mathbb{R}^n \) is \(c \)-porous if each closed ball \(\overline{B}^n(x,r) \subset \mathbb{R}^n \) contains a point \(z \) such that the open ball \(B^n(z,cr) \) does not meet \(E \); \(E \) is porous if it is \(c \)-porous for some \(c \) (see e.g. [10]). For instance, Cantor sets with constant ratio in \(\mathbb{R}^n \) are porous in \(\mathbb{R}^n \). Given \(k > 0 \), we let \(\phi_k \) stand for the similarity map \(x \mapsto kx \), \(x \in \mathbb{R}^n \). A nonempty set \(E \subset \mathbb{R}^n \) is called \(K \)-quasi-self-similar if there is an \(r_0 > 0 \) such that, given any closed ball \(\overline{B}^n(x,r) \) with \(t = r_0/r > 1 \), there exists a \(K \)-quasi-isometry \(f : \phi_t(\overline{B}^n(x,r) \cap E) \to E \), i.e., \(f \) satisfies

\[
1 \leq |y - z| \leq |f(y) - f(z)| \leq K|y - z| \quad \text{for all } y, z \in \phi_t(\overline{B}^n(x,r) \cap E).
\]

Quasi-self-similarity means \(K \)-quasi-self-similarity for some \(K \geq 1 \). See [1, p. 121], [3, p. 65], [4, p. 183]. The constant \(r_0 \) is called a standard size of \(E \) [4, p. 183]. We are going to show that quasi-self-similarity implies porosity under some mild restrictions.

Lemma. Let \(E \subset \mathbb{R}^n \) be a compact, nowhere dense, quasi-self-similar set. Then \(E \) is porous in \(\mathbb{R}^n \).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and let $J(f_c)$ denote the Julia set of f_c. Note that $J(f_c)$ is a compact nowhere dense subset of \mathbb{C}, because ∞ belongs to the Fatou set of f_c. Shishikura [5], [6] has recently shown that there are values of c for which $\text{dim}_H(J(f_c)) = 2$. More precisely, there is a residual subset F of the boundary of the Mandelbrot set such that if $c \in F$, then $\text{dim}_H(J(f_c)) = 2$. Hence we have

Corollary 2. There are values $c \in \mathbb{C}$ such that $J(f_c)$ fails to be quasi-self-similar.

Remark 1. As mentioned above, the Julia set of any hyperbolic rational function is quasi-self-similar (see [2, pp. 89–93] for basic properties of hyperbolic rational maps). It follows from Corollary 1 that $\text{dim}_H(J(f)) < 2$ for such functions. Sullivan [8, Theorem 4] has deduced this result relying on properties of conformal measures defined on Julia sets.

Remark 2. Of course, the same question can be proposed in the context of finitely generated Kleinian groups; that is, is the limit set of any finitely generated Kleinian group of \mathbb{R}^2 quasi-self-similar? The answer is again in the negative. This follows, in view of Corollary 1, from a result of Sullivan [7], according to which there are finitely generated Kleinian groups of \mathbb{R}^2 whose limit set has Hausdorff dimension two. Note, however, that the Hausdorff dimension of a geometrically finite Kleinian group of \mathbb{R}^n is always less than n [9, Theorem D].

REFERENCES

**DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI, P.O. BOX 4 (HALLITUSKATU 15), FIN-00014 HELSINKI, FINLAND