Fixed point theory for compact upper semi-continuous or lower semi-continuous set valued maps
HTML articles powered by AMS MathViewer
- by Donal O’Regan
- Proc. Amer. Math. Soc. 125 (1997), 875-881
- DOI: https://doi.org/10.1090/S0002-9939-97-03746-5
- PDF | Request permission
Abstract:
Fixed point theory is presented for compact u.s.c. and l.s.c. set valued maps.References
- H. Ben–El–Mechaiekh, Fixed points for compact set–valued maps, Q. and A. in General Topology, 10(1992), 153–156.
- H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170 (1992), no. 2, 477–500. MR 1188567, DOI 10.1016/0022-247X(92)90032-9
- H. Ben-El-Mechaiekh and A. Idzik, A Leray-Schauder type theorem for approximable maps, Proc. Amer. Math. Soc. 122 (1994), no. 1, 105–109. MR 1212281, DOI 10.1090/S0002-9939-1994-1212281-2
- H. Ben–El–Mechaiekh and M.Oudadess, Some selection theorems without convexity, Jour. Math. Anal. Appl., 195(1995), 614–618.
- Romulus Cristescu, Topological vector spaces, Editura Academiei, Bucharest; Noordhoff International Publishing, Leyden, 1977. Translated from the Romanian by Mihaela Suliciu. MR 0454552
- Josef Daneš, Generalized concentrative mappings and their fixed points, Comment. Math. Univ. Carolinae 11 (1970), 115–136. MR 263063
- James Dugundji and Andrzej Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR 660439
- Massimo Furi and Patrizia Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math. 47 (1987), no. 3, 331–346. MR 927581, DOI 10.4064/ap-47-3-331-346
- Andrzej Granas, On the Leray-Schauder alternative, Topol. Methods Nonlinear Anal. 2 (1993), no. 2, 225–231. MR 1251936, DOI 10.12775/TMNA.1993.040
- C. J. Himmelberg, J. R. Porter, and F. S. Van Vleck, Fixed point theorems for condensing multifunctions, Proc. Amer. Math. Soc. 23 (1969), 635–641. MR 246175, DOI 10.1090/S0002-9939-1969-0246175-1
- E. Michael, A selection theorem, Proc. Amer. Math. Soc. 17 (1966), 1404–1406. MR 203702, DOI 10.1090/S0002-9939-1966-0203702-5
- E. Michael and C. Pixley, A unified theorem on continuous selections, Pacific J. Math. 87 (1980), no. 1, 187–188. MR 590875, DOI 10.2140/pjm.1980.87.187
- D. O’Regan, Fixed point theory for the sum of two operators, Applied Mathematics Letters, 9(1996), 1–8.
- D. O’Regan, Some fixed point theorems for concentrative mappings between locally convex linear topological spaces, Nonlinear Anal., to appear.
- A. J. B. Potter, An elementary version of the Leray-Schauder theorem, J. London Math. Soc. (2) 5 (1972), 414–416. MR 312342, DOI 10.1112/jlms/s2-5.3.414
- C. H. Su and V. M. Sehgal, Some fixed point theorems for condensing multifunctions in locally convex spaces, Proc. Amer. Math. Soc. 50 (1975), 150–154. MR 380530, DOI 10.1090/S0002-9939-1975-0380530-7
- E. Tarafdar and R. Výborný, Fixed point theorems for condensing multivalued mappings on a locally convex topological space, Bull. Austral. Math. Soc. 12 (1975), 161–170. MR 383167, DOI 10.1017/S0004972700023789
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- Donal O’Regan
- Affiliation: Department Of Mathematics, University College Galway, Galway, Ireland
- MR Author ID: 132880
- Email: Donal.ORegan@UCG.IE
- Received by editor(s): October 16, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 875-881
- MSC (1991): Primary 47H10, 47H04
- DOI: https://doi.org/10.1090/S0002-9939-97-03746-5
- MathSciNet review: 1371137