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ABSTRACT. We prove the Serre duality theorem for the noncommutative pro-
jective scheme proj A when A is a graded noetherian PI ring or a graded
noetherian AS-Gorenstein ring.

0. INTRODUCTION

Let k be a field and let A = ,~, A; be an N-graded right noetherian k-algebra.
In this paper we always assume that A is locally finite in the sense that each A; is
finite dimensional over k. If Ag = k, then A is called connected graded. We denote
by Gr A the category of graded right A-modules and by gr A the subcategory
consisting of noetherian right A-modules. The augmentation ideal A>1 = @, 4;
is denoted by m. Let M = @, M; be a graded right A-module and z a homogeneous
element of M. We say z is m-torsion if xm™ = 0 for some n. All m-torsion elements
form a submodule of M, which is denoted by 7(M). The module M is call m-
torsion (respectively m-torsion-free) if 7(M) = M (respectively 7(M) = {0}). Let
Tor A denote the subcategory of Gr A of all m-torsion modules and tor A denote
the intersection of Tor A and gr A. The (degree) shift of M, denoted by s(M), is
defined by s(M); = M1, and we use M (n) for the n-th power of a shift s™(M).
Given an N-graded right noetherian ring A, the noncommutative projective scheme
of A is defined as Proj A := (QGr A, A, s) where QGr A is the quotient category
Gr A/Tor A, A is the image of A4 in QGr A and s is the degree shift. Sometime
it is easier to work on noetherian objects, and the triple proj A := (qgr A, A, s)
is also called the projective scheme of A, where qgr A = gr A/tor A. (See [AZ]
for more details.) The canonical functor from Gr A to QGr A (and from gr A to
qgr A) is denoted by 7. If M € Gr A, we will use the corresponding calligraphic
letter M for w(M) if no confusion occurs. For example, A = 7(A4).

Let X = proj A. The global section is H’(X, ) = Homqg; a(A,N) and the
cohomology is H'(X, ) = Extg, 4(A,N) for all i > 0. In the commutative case,
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698 AMNON YEKUTIELI AND JAMES J. ZHANG

the Serre duality theorem [H2, I11.7.6] says there is an object w” in qgr A such that
(0-1) 0° : Homgg, A(M,w?) — HY(X, M)*

is a natural isomorphism for all M € qgr A. Here * is the vector space dual and d
is the cohomological dimension of X defined by

cd(X) = max{i | H(X, M) # 0 for some M € QGr A}.

It is easy to see that such w® is unique, and it is called a dualizing sheaf on
X = proj A. In this paper we will prove a version of the Serre Duality Theorem for
noncommutative projective schemes proj A. The first idea is to study H%(X, —)*
as a functor from qgr A to Mod k. In general Mod A is the category of (un-
graded) right A-modules. Using a graded version of Watts’ theorem we will prove
(0-1) for noncommutative rings under some hypotheses. These hypotheses can be
checked for a class of rings including noetherian PI rings. The second idea is to
use the balanced dualizing complex which was introduced and studied in [Ye]. The
existence of balanced dualizing complex implies (0-1) holds for some w® constructed
from the dualizing complex. Since noetherian AS-Gorenstein rings admit balanced
dualizing complexes, (0-1) holds for such rings.

In general we should not expect a dualizing sheaf w® to exist in qgr A, and we
can ask if (0-1) holds for some w® in QGr A. This was answered affirmatively by P.
Jorgensen recently in [Jg]. However when one uses the duality, there will be many
advantages if w' is in qgr A. Hence it is still important to work out for what other
classes of graded rings the dualizing sheaf w° is in qgr A.

1. WaTTS’ THEOREM

Let (C, A, s) be a triple consisting of a k-linear category C, an object A in C
and an automorphism s of C. Both (gr A, A4,s) and (qgr A, A, s) are examples
of such triples. All functors in this paper will preserve the k-linear structure. As
the degree shift, s" M will be denoted by M(n) for all n € Z. Let I' denote the
representing functor @;., Home(s™A, —). Note that in [AZ, Sec. 4], I' is the
functor €P,., Home (A, s'(—)). But it is easy to see that these two I's are naturally
isomorphic, and hence we will not distinguish them. For M in C, T'(M) is a Z-
graded k-module with degree ¢ part being Home(A(—%), M). By composition of
morphisms, I'(A) is a Z-graded k-algebra and T'(M) is a Z-graded right T'(A)-
module with multiplication mr = ms~%(r) for all m € Home(A(—i), M) and r €
Home (A(—7), A).

If F is a covariant functor from C to Mod k, then F denotes the functor
@D,y F(s'(—)). If F is a contravariant functor from C to Mod k, then F denotes
@D,z F(s7(—)). In the case of a bi-functor Ext}(M,N), we have

Extd (M, N) = @D Extd (M, N (i) = @D Extd (M(—i), N).
€L i€EZ

Now let F : C — Mod k be a contravariant functor. We use F(A) for the Z-
graded k-module @, , F(A(—i)). For every x € F(A(—i)) and r € T'(A); =
Home (A(—j),.A), we define a right T'(A)-action by xr = F(s7%(r))(x). Clearly
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SERRE DUALITY FOR NONCOMMUTATIVE PROJECTIVE SCHEMES 699

xr € F(A(—i — j)) and, for every w € T'(A),,
w(rw) = F(s™' (rw))(z) = F(s™(rs ™ (w)))(2)
= F(s7'(r)s™" 7 (w))(x) = F(s7 7 (w)) F(s™(r)(x)
= (ar)w.
Hence F(A) has a natural graded right I'(LA)-module structure.
Proposition 1.1. Let (C, A, s) be a triple as above, and let F be a contravariant
functor from C to Mod k. Then there is a natural transformation o : F —

Homg, A(I'(=), £(A)) such that 0 4(—; are isomorphisms for all i € Z, where A =
I'(A).
Proof. Let M be an object in C. For every x € F(M) and m; € Hom¢(A(—j5), M),
we define opq : F(M) — Homg, 4(I'(M), E(A)) by
z— {om(@) : mj — F(m;)(x)}.
We claim that oa¢(x) is an A-homomorphism. For every r € A; = Home (A(—1),.A),
om(x) maps m;r to
F(mjr)(z) = F(m;s™ (r))(z) = F(s7 (1)) F(m;)(x)
= (F(m;)(x))r = om(x)(m;)r.
Hence oaq(2) is an A-homomorphism and consequently o is well defined.
For every morphism f : M — N in C, consider the following diagram:

F(N) N, HomGrA(F(N)vF(A))

F( f)l lHomGr A(T(F).E(A))

F(M) —*— Homg, 4(T'(M), E(A)).
For y € F(N) and m € T'(M);,

Homey a(T'(f), E(A))on (y) = m — on(y)(fm) = F(fm)(y)
and

oMmF(f)(y): m— F(m)(F(f)(y)) = F(fm)(y).
Hence o is a natural transformation.
If M = A(—i), I(A(—i)) = T(A)(—i). For every x € F(A(—i)), 0.4(—i(z) is an

A-homomorphism sending 1 to z. Hence o 4(_;) is an isomorphism for all 7. O

The next lemma can be proved easily by using the Five Lemma [Ro, 3.32] as in
the proof of Watts’ original theorem [Ro, 3.33].

Lemma 1.2. Let F' and H be two contravariant left exact functors from C to an-
other category D. Suppose {G;}1 is a set of generators such that every object M € C
is finitely presented by {G;}1. If o : F — H is a natural transformation and og,
is an tsomorphism for all i € I, then o is a natural isomorphism from F to H.

Now we apply Proposition 1.1 and Lemma 1.2 to (gr A, A4, s).

Theorem 1.3 (Watts’ Theorem for gr A). Let A be a graded right noetherian al-
gebra. Let F' be a contravariant left exact functor from gr A to Mod k. Then

F = Homg, a(—, B) for a Z-graded (not necessarily noetherian) right A-module
B=F(Aa).
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700 AMNON YEKUTIELI AND JAMES J. ZHANG

Proof. First, the functor I' is naturally isomorphic to the identity functor and the
algebra A is naturally isomorphic to I'(A4). Hence, by Proposition 1.1, 0 : F —
Homg; a(—, B) is a natural transformation. Note that Homg, 4(—, B) is a left
exact functor. Since A is right noetherian, {A(7) | i € Z} is a set of generators and
every object in gr A is finitely presented. By Proposition 1.1, the hypotheses of
Lemma 1.2 hold. Therefore F' = Homg; 4(—, B). O

Similarly a version of Watts’ theorem holds for the triple (qgr A, .A,s). By
[AZ, 4.5], if A satisfies the condition X7, then A can be recovered from the triple
(qgr A, A, s) up to m-torsion. Recall that A satisfies y; if Extér A(A/m, M) are
finite dimensional over k for all graded noetherian right A-modules M. If x; holds

for all 7, then we say A satisfies y.

Theorem 1.4 (Watts’ Theorem for qgr A). Let A be an N-graded right noetherian
algebra satisfying x1. Let F be a contravariant left exact functor from qgr A to
Mod k. If B = F(A)>o is a noetherian right A-module, then F' = Homggy a(—, B)
where B = 7(B).

Proof. Since A satisfies x1, by [AZ, 4.6(2)] we may assume that A = I'(A)>¢. By
Proposition 1.1, o0 : F — Homg, r(4)(I'(=), F(A)) is a natural transformation.
Clearly the following is also a natural transformation:

Homg, pay(T'(—), £(A)) — Home, 4(T'(—)>0, F(A)>0) — Homqar a(7'(—), B).
Since 7' & Idqgr 4 [AZ, 4.5] and B is noetherian, we have a natural transformation
1 : Homey () (T'(=), £(A)) — Homqar a(—, B) = Homgg: A(—, B).

Since A satisfies x1, by [AZ, 3.13], for i > 0,
Homggr A(A(—i), B) = B; = F(A(—i)) = Homg; r(a) (I'(A(=4)), £(A)).

Hence n4(_s) is an isomorphism for ¢ > 0. Thus no is a natural transformation

from F' to Homgg, a(—,B) such that (7o) 4(—s) is an isomorphism for i > 0.
For every p, {A(—i)|i > p} is a set of generators for the noetherian category
qgr A. Then the hypotheses of Lemma 1.2 hold and therefore F' = Homgg, 4(—, B).
O

2. DUALITY THEOREMS

Let A be a graded right noetherian algebra and let M and N be graded right
noetherian A-modules. Suppose the projective dimension of M, denoted by pd(M),
is d < 0o. Then Extg, (M, —) =0 for all i > d + 1. Hence a short exact sequence

0 —K-—L—N—0
yields a long exact sequence in Mod k
0 — Homyg, 4(M, K) — Homg, 4(M, L) — Homg, s(M,N) —
Exty, 4(M,K) — Ext}, 4(M,L) — BExty, ,(M,N) —

Extd, (M, K) — Bxtl 4(M,L) — Ext% 4,(M,N) — 0.
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Applying the contravariant exact functor V —— V* = Homy(V, k), we obtain
0 «— Homg, 4(M, K)* «— Homg, 4o(M,L)" «— Homg, o(M,N)* «—
Exty, o(M,K)* «— Exty, ,(M,L)" «—— Ext}, (M, N)* «—

Extl, o(M,K)* «— Extl, ,(M,L)* «— Extl ,(M,N)* «— 0.

Thus Extgr (M, —)* is a contravariant left exact functor from gr A to Mod k. By
Theorem 1.3, Extgr A(M,—)* =2 Homg, a(—, B) for some graded right A-module
B. By the long exact sequence above, {Extgr_A(M, —)* | i > 0} is a é-functor in
the sense of [H2, p.205]. Since {Exty, 4(—, B) | i > 0} is a universal é-functor [H2,
II1.1.4], there is a natural transformation

oi : EXté}r A(_aB> - Ethr_A(Ma _)*

with 6% being the inverse of the natural isomorphism given in Theorem 1.3 for
the functor F' = Extglr A4(M,—=)*. Hence we have proved part (a) of the following
theorem.

Theorem 2.1. Let M be a noetherian graded right A-module with pd(M) = d.
(a) For each i > 0, there is a natural transformation

0' : Extly, 4(—, B) — Extgr_A(M, -)*
where B is a graded right A-module and 0y is the inverse of the natural isomorphism
giwen in Theorem 1.3. _
(b) These 0% are isomorphisms for all i if and only if Extgr_A(M,A(n)) =0 for
allt>1 and all n € Z.

Proof. (b) If # is an isomorphism and i > 1, then
Exti 4 (M, A(n)) & Extg, 4(A(n), B)” = 0.

Conversely suppose that Extgr_il(M,A(n)) =0 for allm € Z and all i > 1. Since
{A(n) | n € Z} is a set of generators for gr A, by [H2, p.206], Extgr—i(M,—)* is
coeffaceable for all ¢ > 1. By [H2, III 1.34], {Extgr_A(M, —)* | ¢ > 0} is univer-

sal. The derived functor {Ext, 4(—,B) | i > 0} is always a universal -functor
[H2, II1.1.4]. Two universal é-functors are naturally isomorphic if §° is a natural
isomorphism. O

From now on we consider the triple (qgr 4, A, s).

Theorem 2.2. Let A be a graded right noetherian ring satisfying x1. Let M be in
qer A with max{ i |Extf1gr AMIN) £ 0 for some N} = d < oo.

(a) If B =D, ExtzgrA(M,A(—n))* is a noetherian graded right A-module,
then there is a natural transformation

0 - Extégr 4(—B) — Extzg_riA(M, -)*

for all i, with 0° being the inverse of the natural isomorphism given in Theorem
1.4.
(b) Suppose A satisfies x. Then 0% is a natural isomorphism for all i if and only

if Extgg_riA(M,A(—n)) =0 for alli>1 and all n>> 0.
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Proof. The proof of part (a) is very similar to the proof of Theorem 2.1(a), namely
using the argument before Theorem 2.1. The only difference is that in this case we
use Theorem 1.4, instead of Theorem 1.3, for the functor F' = Extggr AM, =)~
For part (b) we need the following modification.

Suppose A satisfies x. If §° is an isomorphism and i > 1, then, by Serre’s
finiteness theorem [AZ, 7.5],

Extli ) (M, A(—n))* = Extly, o(A(—n), B) = H'(X,B(n)) = 0

for all n > 0. Conversely if Extgg_riA(M, A(—n))* =0 for all i > 1 and all n > 0,
then {Extgg_riA(M, —)*|é > 0} is a universal §-functor because {A(—n)|n > p} is
a set of generators for qgr A for every p. Two universal §-functors are naturally

isomorphic, and hence each 6° is a natural isomorphism. O

Let M = @, M; be a Z-graded module. We say M is left bounded (respectively
right bounded) if M; = 0 for all i < 0 (respectively ¢ > 0). If A satisfies ¥,
then by [AZ, 7.5], each HY(X,.A(4)) is finite dimensional over k and H*(X, A) :=
@D, HI(X, A(i)) is right bounded for all ¢ > 1. For a graded module M = @, M;,
let M* denote @, M*,. Hence HY(X, A)* is left bounded for all ¢ > 1. Now we
prove the Serre duality theorem.

Theorem 2.3 (The Serre Duality for proj A). Let A be a graded right noetherian
ring satisfying x1, and assume that cd( proj A) = d < co.
1. Suppose HY(X, A)%, is a noetherian right A-module. Denote m(H*(X,.A)*)
by wP. -
(a) For each i, there is a natural transformation
0" : Extyg, A=) — HIT(X, —)

where 69 is a natural isomorphism.
(b) Suppose A satisfies x. Then 0° are natural isomorphisms for all i if and
only if HY'(X, A) is finite dimensional for d > i > 1 and H*(X, A) is left bounded.
2. Conversely, if there is a natural isomorphism

0° : Homgg, a(—,w®) — HY(X, —)*
for an object w° in qgr A, then ﬂal(X7 A>§0 is a noetherian right A-module and
W0 = r(HA(X, A)°).

Proof. Part 1 is an immediate consequence of Theorem 2.2. It remains to prove
part 2. Since A satisfies 1 and w" is an object in qgr A, by [AZ, 4.5], T'(w")>0 is
a noetherian right A-module and w° 2 7(I'(w®)>(). Then part 2 follows from the
isomorphism

P(w) = @ Hom(A(~i). ") = P H(X. A(-i))" = HY(X. 4)".
O

Following the Serre duality theorem in the commutative case [H2, II1.7.6] and
Theorem 2.3, it is reasonable to make the following definition.
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Definition 2.4. (a) Let X = proj A be a projective scheme with ¢d(X) = d. An
object w% in qgr A is called a dualizing sheaf of X if there is a natural isomorphism

0° : Homgg, a(—,w’) — HY(X, —)".

(b) Suppose X has a dualizing sheaf w®. We say X is classical Cohen-Macaulay
if
91' : EXtégr A(_vwo) - Hd_i(Xv _)*
are natural isomorphisms for all 3.

It is easy to see that a dualizing sheaf is unique, up to isomorphism, if it exists.
By the definition, existence of a dualizing sheaf is independent of the choice of
the shift operator. If proj A has a dualizing sheaf w®, then, for each i, there
is a natural transformation 6 : ExtégrA(—7w0) — HY (X, —)*. Under some
hypotheses Theorem 2.3 gives a sufficient and necessary condition for a dualizing
sheaf to exist. Namely, to show the existence of a dualizing sheaf is equivalent to
showing that H%(X,.A)%, is a noetherian right A-module. By [AZ, 7.9], if A is
noetherian and satisfies x, then H%(X, A)* is a noetherian left A-module. If A is
commutative, then left and right module structures are the same. Hence Theorem
2.3 re-proves the Serre duality theorem in the commutative case.

3. PI RINGS

It is unknown if H?(X, A)* is a noetherian right A-module for all noetherian
locally finite algebras satisfying x. This problem is solved for the following case.

Let A be a noetherian graded algebra such that each m-torsion-free prime factor
of A has a homogeneous normal element of positive degree. By [AZ, 8.12(2)], A
satisfies y and cd( proj A) < Kdim(A4)—1 < oo where Kdim is Krull (Rentschler-
Gabriel) dimension. Familiar examples of such rings are noetherian PI rings and
quantum matrix algebras. A bimodule is called noetherian if it is both left and
right noetherian.

Theorem 3.1. Let A be a graded left and right noetherian algebra such that each
m-torsion-free prime factor of A has a normal element of positive degree. Let M
be a graded noetherian A-bimodule. Then H'(X, M)* are noetherian A-bimodules
for alli>0.

Proof. By [AZ, 7.9], H'(X, M)* are left noetherian for i > 0. We need to show
that these are right noetherian. By [AZ, 7.2.(2)], it suffices to show that H (M)*
are right noetherian for all ¢, where H; (M) is defined by

(3-1)  Hy(M)= lim Exty o(A/m", M) = lim Exty, 4(A/A>n, M).

Since lim,, ., is exact, { H. (M)* | i € Z} is a é-functor in the sense of [H2, p.
205]. By [AZ, 7.2 (2) and 3.6(3)], we have the following statements:

(i) H.(—)* =0 foralli< 0andi> cd(proj A)+ 1.

(i) H2(N)* = 7(N)* and hence it is always finite dimensional.

(iii) If N is finite dimensional, then H® (N)* = N* and H' (N)* =0 for all i > 1.

(iv) H: (N)* is left bounded for all i and all noetherian A-modules N.

Next we use induction on Kdim(M4) to prove that H:, (M)* are right noetherian
for all ¢. If Kdim(Ma) = 0, i.e., M is finite dimensional, then the statement is
obvious. Now let M be a bimodule with Kdim(M4) = n > 0 and suppose the
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statement holds for all noetherian bimodules N with Kdim(N4) < n. By using a
long exact sequence, we may assume that M is a critical bimodule and has prime
annihilators on both sides. Let P = ann(aM) and Q = ann(M4). Since M is not
m-torsion, both A/P and A/Q are not m-torsion. Let = be a regular normal element
of positive degree in A/P and let o be the automorphism of A/P determined by
za = o(a)z for all a € A/P. We may think M as an (A/P, A)-bimodule. The
twisted module 7 M is defined by axm = o(a)m for alla € A/P and m € M. Hence
M is an (A/ P, A)-bimodule. The left multiplication by 2 defines a homomorphism
from M to “M(d), where d = deg(x). Since M is critical, we obtain a short exact
sequence of bimodules

(3-2) 0—M-—°Md) — N—0
where N = “M(d)/z “M(d). Applying H,,(—)* to (3-2), we get
(33) - — Hu(N)" — Hy("M(d)" — Hy(M)" — H7 ' (N)" — -

Note that the right A-module structure of H, (M)* comes from the left A-module
structure of M. Then the map H’ ("M (d))* — H’ (M)* is the right multiplica-
tion by z. Hence the cokernel of this right multiplication is H’ (M)*/H' (M)*z,
which is a submodule of H' '(N)* by (3-3). Since M is critical, Kdim(N4) <
Kdim(M,). By the induction hypothesis, H; ' (N)* is right noetherian and hence
Hi, (M)*/HL, (M)*z is right noetherian. Suppose HY, (M)*/HL (M) 'z = 31 T A
for some m; € H. (M)*. Since H:, (M)* is left bounded, by induction on the degree

n

of elements we obtain that H. (M)* = Y27 m; A, which is right noetherian. O
The following corollary is an immediate consequence of Theorems 2.3 and 3.1.

Corollary 3.2. Let A be as in Theorem 3.1. Then proj A has a dualizing sheaf.

4. BALANCED DUALIZING COMPLEXES

Let C be an abelian category with enough injectives. Let D(C) denote the
derived category of C and DT (C) the subcategory of D(C) consisting of bounded
below complexes. We can define RHome (M, N°) for N € DT(C) and M" €
D(C), by replacing N* with a quasi-isomorphic complex of injectives. Write D} (C)
(respectively D (C)) for the subcategory of bounded below (respectively bounded)
complexes whose cohomologies are noetherian in C. In this section C will be either
QGr A or Gr A for a graded left and right noetherian ring. Regarding shifts, we
denote by M [n] the shift by n of the complex M, and by M (n) the shift by degree
n as defined before if M is in either QGr A or Gr A. See [Ye] and [H1] for details
on derived categories.

Lemma 4.1. Let M" € Df(Gr A) and N' € D™ (Gr A), and let M = n(M") and
N =m(N"). Then

(4-1) Extay a(MLN7) = Tim Extg, , (M, N7)
forallq e Z.

Proof. There is a bi-functorial isomorphism

(4-2) Homqgr a(M,N) = nlingo Homgy a(M>p, N)

forall M € gr Aand N € Gr A (see [AZ, (2.2.1)]). By the exactness of the functors
M — M>,, and lim,,_, ., and arguing as in the proof of [Ye, 2.2], we see that the
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derived bi-functor R1lim,, . Homg, 4(Ms, , N°) is defined for N € DT (Gr A) and
M € D(Gr A). We may assume that N is a bounded below complex of injectives
[Ye, 4.2], and then the R can be omitted.

Now fix N'. By [H1, 1.7.1(i)] the isomorphism (4-2) implies an isomorphism

RHomgg, 4(M,N') = Rnli_{r;oHom'GrA(M'Zn,N')
for M" € D?(Gr A). The lemma is proved by passing to cohomologies. |
Observe that by taking M = A in (4-1) we get
HY(X,N) 2 lim BExt&, ,(Asn, N').
By [AZ, 7.2(2)], HY(X, M) is isomorphic to the local cohomology HLM (M) for
q > 1, where HY (—) is defined by (3-1). By [Ye, 4.17 and 4.18], if A has a balanced
dualizing complex (see [Ye, 3.3 and 4.1] for the definition), then there is a version

of the local duality theorem. We will use the local duality theorem to prove the
Serre duality theorem for such A.

Theorem 4.2. Let A be a connected graded left and right noetherian ring and let
X = proj A. Suppose that A has a balanced dualizing complex R’ .
1. Let M" € DP(Gr A) and q € Z. Then

(4'3) H%(M) gMC_}gA(M}R.)*v
and this is a locally finite and right bounded module.
2. Let R =n(R) and M =7n(M"). Then
HY(X, M) = lim HE (M) = Exto ) (M R)
(4-4) = Extgl, o(M R[-1)).

In this sense, we call R'[—1] a dualizing complex: for proj A.
3. A satisfies the condition x and cd(X) = d, where —(d+1) = min{ i | H(R") #
0}
4. Let w° = H™ @D (RY). Then w° is the dualizing sheaf for proj A.
5. The following conditions are equivalent:
(a) X = proj A is classical Cohen-Macaulay.
(b) WOld + 1] is isomorphic to R* in D(QGr A).
(c) HY(R') is m-torsion for ¢ > —(d + 1).

Remark. The dualizing complex R is a complex of bimodules, but when passing
to QGr A we forget the left module structure of R'.

Proof. 1. This is [Ye, 4.18]. Note that Extg? ,(M',R’) is a noetherian left A-
module, so HZ (M) is a locally finite, right bounded module.
2. The exact sequence

0— A>, — A— A/A>, — 0,

when considered as a triangle in D(Gr A), yields a long exact sequence

c = HU(M o — Extly, 4 (Asn, M) — Extg} )y (A/Asn, M) — HTF (M) — -
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for any M € DP(Cr A), where HY(M)o is the degree zero part of the g-th coho-
mology of M". First taking lim, .., and then replacing M by M3, in the above,
we have -

- HY(M,)o — HY(X, M) — HEF (M) — HOH(ME)o — -
where M" = 7(M") = m(M,). Taking k-linear duals and using the fact that
Jim HY(Mz,)5 = 0,

we obtain the first isomorphism of (4-4). The second one is a consequence of part
1 and Lemma 4.1.

3. By part 1, for every noetherian right module M, HZ (M) is right bounded for
all ¢. By [AZ, 3.8(3)], A satisfies x.

By [Ye, 4.2], we may assume R is a minimal injective complex (of right A-
modules), i.e., each R® is an injective hull of ker(9;), where 9; : R® — R is the
coboundary map of R'. Since 7 is exact and has a right adjoint functor [AZ, (2.2.2)],
R = n(R’) is a minimal injective complex in D' (QGr A). By the definition of d,
we have HY(R') = 0 for all ¢ < —(d + 1), and H~*1(R") £ 0. Hence R? = 0 for
all ¢ < —(d+ 1) and, by (4-4),

HY(X, M) = Exto i) (M, R')* = 0.

Therefore cd(X) < d. By the definition of dualizing complex, R* € D{ (Gr A),
whence R € Df (QGr A) and w° := H- TV (R") € qgr A. By (4-3)

(4-5) Homqa:r 4(M,w’) = Extég:j)(/\/l, R) = HY(X, M)*.

Thus H*(X,w®) # 0 and ¢d(X) = d.

4. Follows immediately from (4-5).

5. (a) & (b) By Definiton 2.4, X = proj A is classical Cohen-Macaulay if
and only if ExtgGr A(M,w0) = H7Y(X, M)* for all i and M. By (4-4), this is
equivalent to

(4-6)  Extig, 4(M,w°) = Extgd i (M, RY) = Extiyg, 4(M, R [—(d+1)])

for all ¢ and M. But (4-6) holds if and only if R'[—(d + 1)] is a minimal injective
resolution of w®. This is saying that w®[d + 1] is quasi-isomorphic to R .

(b) < (c) The complex w®[d+1] is quasi-isomorphic to R if and only if H(R') =
0 for all ¢ > —(d+1). But HY(R') = n(HY(R")). Therefore HY(R') = 0 if and only
if HY(R') is m-torsion. |

Theorem 4.2.2 tells that if A has a balanced dualizing complex R’, then proj A
has a dualizing complex R'[~1] € Df (QGr A). P. Jgrgensen in [Jg, 3.3] proved
recently that a dualizing complex always exists in D1(QGr A). The question of
when a dualizing complex exists in D (QGr A) is still open. It was proved in [Ye]
that the following algebras have balanced dualizing complexes:

(a) graded noetherian AS-Gorenstein rings;

(b) graded noetherian rings finite over their centers;

(c) twisted homogeneous coordinate rings.

Finally, we state an immediate corollary of Theorem 4.2 for AS-Gorenstein rings.
Recall that a connected graded ring A with injective dimension d + 1 is called AS-
Gorenstein if Ext’y(k, A) 2 k(e)[—(d + 1)] for some e € Z (see [Ye, 4.13(ii)]). By
[Ye, 4.14] (which holds in this case too; the proof is exactly the same as the one of
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[Ye, 4.14]), R = “A(—e)[d + 1] is a balanced dualizing complex over A for some
algebra automorphism o.

Corollary 4.3. Let A be a connected graded left and right noetherian AS-Goren-
stein ring of injective dimension d+ 1, and let X = proj A.

1. A satisfies the condition x.

2. cd(X) =d, and w° = A(—e) is the dualizing sheaf for X.

8. X is classical Cohen-Macaulay.

Remark. Presumably the Brown Representability Theorem, as used in [Jg], would
imply that if the functor (I'y(—))*, where I'yy(—) is defined to be H% (—) [Ye, page
56], has finite cohomological dimension, then it is representable on D(Gr A) by
(R (A))*. However this still wouldn’t make (RI'y,(A4))* into a balanced dualizing
complex in the sense of [Ye]. We thank the referee for calling attention to this
point.
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