
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 125, Number 3, March 1997, Pages 697–707
S 0002-9939(97)03782-9

SERRE DUALITY FOR NONCOMMUTATIVE
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Abstract. We prove the Serre duality theorem for the noncommutative pro-
jective scheme proj A when A is a graded noetherian PI ring or a graded
noetherian AS-Gorenstein ring.

0. Introduction

Let k be a field and let A =
⊕

i≥0 Ai be an N-graded right noetherian k-algebra.
In this paper we always assume that A is locally finite in the sense that each Ai is
finite dimensional over k. If A0 = k, then A is called connected graded. We denote
by Gr A the category of graded right A-modules and by gr A the subcategory
consisting of noetherian right A-modules. The augmentation ideal A≥1 =

⊕
i≥1Ai

is denoted by m. Let M =
⊕

iMi be a graded right A-module and x a homogeneous
element of M . We say x is m-torsion if xmn = 0 for some n. All m-torsion elements
form a submodule of M , which is denoted by τ(M). The module M is call m-
torsion (respectively m-torsion-free) if τ(M) = M (respectively τ(M) = {0}). Let
Tor A denote the subcategory of Gr A of all m-torsion modules and tor A denote
the intersection of Tor A and gr A. The (degree) shift of M , denoted by s(M), is
defined by s(M)i = Mi+1, and we use M(n) for the n-th power of a shift sn(M).
Given an N-graded right noetherian ring A, the noncommutative projective scheme
of A is defined as Proj A := (QGr A,A, s) where QGr A is the quotient category
Gr A/Tor A, A is the image of AA in QGr A and s is the degree shift. Sometime
it is easier to work on noetherian objects, and the triple proj A := (qgr A,A, s)
is also called the projective scheme of A, where qgr A = gr A/tor A. (See [AZ]
for more details.) The canonical functor from Gr A to QGr A (and from gr A to
qgr A) is denoted by π. If M ∈ Gr A, we will use the corresponding calligraphic
letter M for π(M) if no confusion occurs. For example, A = π(AA).

Let X = proj A. The global section is H0(X,N ) = HomQGr A(A,N ) and the

cohomology is Hi(X,N ) = ExtiQGr A(A,N ) for all i > 0. In the commutative case,
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the Serre duality theorem [H2, III.7.6] says there is an object ω0 in qgr A such that

θ0 : Homqgr A(M, ω0) −→ Hd(X,M)∗(0-1)

is a natural isomorphism for all M∈ qgr A. Here ∗ is the vector space dual and d
is the cohomological dimension of X defined by

cd(X) = max{i | Hi(X,M) 6= 0 for someM∈ QGr A}.

It is easy to see that such ω0 is unique, and it is called a dualizing sheaf on
X = proj A. In this paper we will prove a version of the Serre Duality Theorem for
noncommutative projective schemes proj A. The first idea is to study Hd(X,−)∗

as a functor from qgr A to Mod k. In general Mod A is the category of (un-
graded) right A-modules. Using a graded version of Watts’ theorem we will prove
(0-1) for noncommutative rings under some hypotheses. These hypotheses can be
checked for a class of rings including noetherian PI rings. The second idea is to
use the balanced dualizing complex which was introduced and studied in [Ye]. The
existence of balanced dualizing complex implies (0-1) holds for some ω0 constructed
from the dualizing complex. Since noetherian AS-Gorenstein rings admit balanced
dualizing complexes, (0-1) holds for such rings.

In general we should not expect a dualizing sheaf ω0 to exist in qgr A, and we
can ask if (0-1) holds for some ω0 in QGr A. This was answered affirmatively by P.
Jørgensen recently in [Jø]. However when one uses the duality, there will be many
advantages if ω0 is in qgr A. Hence it is still important to work out for what other
classes of graded rings the dualizing sheaf ω0 is in qgr A.

1. Watts’ Theorem

Let (C,A, s) be a triple consisting of a k-linear category C, an object A in C
and an automorphism s of C. Both (gr A,AA, s) and (qgr A,A, s) are examples
of such triples. All functors in this paper will preserve the k-linear structure. As
the degree shift, snM will be denoted by M(n) for all n ∈ Z. Let Γ denote the
representing functor

⊕
i∈ZHomC(s

−iA,−). Note that in [AZ, Sec. 4], Γ is the

functor
⊕

i∈ZHomC(A, si(−)). But it is easy to see that these two Γs are naturally
isomorphic, and hence we will not distinguish them. For M in C, Γ(M) is a Z-
graded k-module with degree i part being HomC(A(−i),M). By composition of
morphisms, Γ(A) is a Z-graded k-algebra and Γ(M) is a Z-graded right Γ(A)-
module with multiplication mr = ms−i(r) for all m ∈ HomC(A(−i),M) and r ∈
HomC(A(−j),A).

If F is a covariant functor from C to Mod k, then F denotes the functor⊕
i∈Z F (si(−)). If F is a contravariant functor from C to Mod k, then F denotes⊕
i∈Z F (s−i(−)). In the case of a bi-functor ExtqC(M,N ), we have

ExtqC(M,N ) ∼=
⊕
i∈Z

ExtqC(M,N (i)) ∼=
⊕
i∈Z

ExtqC(M(−i),N ).

Now let F : C −→ Mod k be a contravariant functor. We use F (A) for the Z-
graded k-module

⊕
i∈Z F (A(−i)). For every x ∈ F (A(−i)) and r ∈ Γ(A)j =

HomC(A(−j),A), we define a right Γ(A)-action by xr = F (s−i(r))(x). Clearly
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xr ∈ F (A(−i− j)) and, for every w ∈ Γ(A)l,

x(rw) = F (s−i(rw))(x) = F (s−i(rs−j(w)))(x)

= F (s−i(r)s−i−j(w))(x) = F (s−i−j(w))F (s−i(r))(x)

= (xr)w.

Hence F (A) has a natural graded right Γ(A)-module structure.

Proposition 1.1. Let (C,A, s) be a triple as above, and let F be a contravariant
functor from C to Mod k. Then there is a natural transformation σ : F −→
HomGr A(Γ(−), F (A)) such that σA(−i) are isomorphisms for all i ∈ Z, where A =
Γ(A).

Proof. LetM be an object in C. For every x ∈ F (M) and mj ∈ HomC(A(−j),M),
we define σM : F (M) −→ HomGr A(Γ(M), F (A)) by

x 7−→ {σM(x) : mj 7−→ F (mj)(x)}.
We claim that σM(x) is anA-homomorphism. For every r ∈ Ai = HomC(A(−i),A),
σM(x) maps mjr to

F (mjr)(x) = F (mjs
−j(r))(x) = F (s−j(r))F (mj)(x)

= (F (mj)(x))r = σM(x)(mj)r.

Hence σM(x) is an A-homomorphism and consequently σM is well defined.
For every morphism f :M−→ N in C, consider the following diagram:

F (N )
σN−−−−→ HomGr A(Γ(N ), F (A))

F (f)

y yHomGr A(Γ(f),F (A))

F (M)
σM−−−−→ HomGr A(Γ(M), F (A)).

For y ∈ F (N ) and m ∈ Γ(M)j ,

HomGr A(Γ(f), F (A))σN (y) : m 7−→ σN (y)(fm) = F (fm)(y)

and

σMF (f)(y) : m 7−→ F (m)(F (f)(y)) = F (fm)(y).

Hence σ is a natural transformation.
If M = A(−i), Γ(A(−i)) ∼= Γ(A)(−i). For every x ∈ F (A(−i)), σA(−i)(x) is an

A-homomorphism sending 1 to x. Hence σA(−i) is an isomorphism for all i.

The next lemma can be proved easily by using the Five Lemma [Ro, 3.32] as in
the proof of Watts’ original theorem [Ro, 3.33].

Lemma 1.2. Let F and H be two contravariant left exact functors from C to an-
other category D. Suppose {Gi}I is a set of generators such that every objectM∈ C
is finitely presented by {Gi}I. If σ : F −→ H is a natural transformation and σGi
is an isomorphism for all i ∈ I, then σ is a natural isomorphism from F to H.

Now we apply Proposition 1.1 and Lemma 1.2 to (gr A,AA, s).

Theorem 1.3 (Watts’ Theorem for gr A). Let A be a graded right noetherian al-
gebra. Let F be a contravariant left exact functor from gr A to Mod k. Then
F ∼= HomGr A(−, B) for a Z-graded (not necessarily noetherian) right A-module
B = F (AA).
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Proof. First, the functor Γ is naturally isomorphic to the identity functor and the
algebra A is naturally isomorphic to Γ(AA). Hence, by Proposition 1.1, σ : F −→
HomGr A(−, B) is a natural transformation. Note that HomGr A(−, B) is a left
exact functor. Since A is right noetherian, {A(i) | i ∈ Z} is a set of generators and
every object in gr A is finitely presented. By Proposition 1.1, the hypotheses of
Lemma 1.2 hold. Therefore F ∼= HomGr A(−, B).

Similarly a version of Watts’ theorem holds for the triple (qgr A,A, s). By
[AZ, 4.5], if A satisfies the condition χ1, then A can be recovered from the triple
(qgr A,A, s) up to m-torsion. Recall that A satisfies χi if Extigr A(A/m,M) are
finite dimensional over k for all graded noetherian right A-modules M . If χi holds
for all i, then we say A satisfies χ.

Theorem 1.4 (Watts’ Theorem for qgr A). Let A be an N-graded right noetherian
algebra satisfying χ1. Let F be a contravariant left exact functor from qgr A to
Mod k. If B = F (A)≥0 is a noetherian right A-module, then F ∼= Homqgr A(−,B)
where B = π(B).

Proof. Since A satisfies χ1, by [AZ, 4.6(2)] we may assume that A = Γ(A)≥0. By
Proposition 1.1, σ : F −→ HomGr Γ(A)(Γ(−), F (A)) is a natural transformation.
Clearly the following is also a natural transformation:

HomGr Γ(A)(Γ(−), F (A))→ HomGr A(Γ(−)≥0, F (A)≥0)→ HomQGr A(πΓ(−),B).

Since πΓ ∼= Idqgr A [AZ, 4.5] and B is noetherian, we have a natural transformation

η : HomGr Γ(A)(Γ(−), F (A)) −→ HomQGr A(−,B) = Homqgr A(−,B).

Since A satisfies χ1, by [AZ, 3.13], for i� 0,

Homqgr A(A(−i),B) ∼= Bi = F (A(−i)) ∼= HomGr Γ(A)(Γ(A(−i)), F (A)).

Hence ηA(−i) is an isomorphism for i � 0. Thus ησ is a natural transformation
from F to Homqgr A(−,B) such that (ησ)A(−i) is an isomorphism for i� 0.

For every p, {A(−i)|i ≥ p} is a set of generators for the noetherian category
qgr A. Then the hypotheses of Lemma 1.2 hold and therefore F ∼= Homqgr A(−,B).

2. Duality theorems

Let A be a graded right noetherian algebra and let M and N be graded right
noetherian A-modules. Suppose the projective dimension of M , denoted by pd(M),
is d <∞. Then Extigr A(M,−) = 0 for all i ≥ d+ 1. Hence a short exact sequence

0 −→ K −→ L −→ N −→ 0

yields a long exact sequence in Mod k

0 −→Homgr A(M,K) −→ Homgr A(M,L) −→ Homgr A(M,N) −→
Ext1

gr A(M,K) −→ Ext1
gr A(M,L) −→ Ext1

gr A(M,N) −→
· · · · · ·

Extdgr A(M,K) −→ Extdgr A(M,L) −→ Extdgr A(M,N) −→ 0.
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Applying the contravariant exact functor V 7−→ V ∗ = Homk(V, k), we obtain

0←−Homgr A(M,K)∗ ←− Homgr A(M,L)∗ ←− Homgr A(M,N)∗ ←−
Ext1

gr A(M,K)∗ ←− Ext1
gr A(M,L)∗ ←− Ext1

gr A(M,N)∗ ←−
· · · · · ·

Extdgr A(M,K)∗ ←− Extdgr A(M,L)∗ ←− Extdgr A(M,N)∗ ←− 0.

Thus Extdgr A(M,−)∗ is a contravariant left exact functor from gr A to Mod k. By

Theorem 1.3, Extdgr A(M,−)∗ ∼= HomGr A(−, B) for some graded right A-module

B. By the long exact sequence above, {Extd−igr A(M,−)∗ | i ≥ 0} is a δ-functor in

the sense of [H2, p.205]. Since {Extigr A(−, B) | i ≥ 0} is a universal δ-functor [H2,
III.1.4], there is a natural transformation

θi : ExtiGr A(−, B) −→ Extd−igr A(M,−)∗

with θ0 being the inverse of the natural isomorphism given in Theorem 1.3 for
the functor F = Extdgr A(M,−)∗. Hence we have proved part (a) of the following
theorem.

Theorem 2.1. Let M be a noetherian graded right A-module with pd(M) = d.
(a) For each i ≥ 0, there is a natural transformation

θi : ExtiGr A(−, B) −→ Extd−igr A(M,−)∗

where B is a graded right A-module and θ0 is the inverse of the natural isomorphism
given in Theorem 1.3.

(b) These θi are isomorphisms for all i if and only if Extd−igr A(M,A(n)) = 0 for
all i ≥ 1 and all n ∈ Z.

Proof. (b) If θi is an isomorphism and i ≥ 1, then

Extd−igr A(M,A(n)) ∼= ExtiGr A(A(n), B)∗ = 0.

Conversely suppose that Extd−igr A(M,A(n)) = 0 for all n ∈ Z and all i ≥ 1. Since

{A(n) | n ∈ Z} is a set of generators for gr A, by [H2, p.206], Extd−igr A(M,−)∗ is

coeffaceable for all i ≥ 1. By [H2, III 1.3A], {Extd−igr A(M,−)∗ | i ≥ 0} is univer-

sal. The derived functor {ExtiGr A(−, B) | i ≥ 0} is always a universal δ-functor
[H2, III.1.4]. Two universal δ-functors are naturally isomorphic if θ0 is a natural
isomorphism.

From now on we consider the triple (qgr A,A, s).

Theorem 2.2. Let A be a graded right noetherian ring satisfying χ1. Let M be in
qgr A with max{ i |Extiqgr A(M,N ) 6= 0 for some N} = d <∞.

(a) If B =
⊕

n≥0 Extdqgr A(M,A(−n))∗ is a noetherian graded right A-module,
then there is a natural transformation

θi : Extiqgr A(−,B) −→ Extd−iqgr A(M,−)∗

for all i, with θ0 being the inverse of the natural isomorphism given in Theorem
1.4.

(b) Suppose A satisfies χ. Then θi is a natural isomorphism for all i if and only

if Extd−iqgr A(M,A(−n)) = 0 for all i ≥ 1 and all n� 0.
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Proof. The proof of part (a) is very similar to the proof of Theorem 2.1(a), namely
using the argument before Theorem 2.1. The only difference is that in this case we
use Theorem 1.4, instead of Theorem 1.3, for the functor F = Extdqgr A(M,−)∗.
For part (b) we need the following modification.

Suppose A satisfies χ. If θi is an isomorphism and i ≥ 1, then, by Serre’s
finiteness theorem [AZ, 7.5],

Extd−iqgr A(M,A(−n))∗ ∼= Extiqgr A(A(−n),B) ∼= Hi(X,B(n)) = 0

for all n� 0. Conversely if Extd−iqgr A(M,A(−n))∗ = 0 for all i ≥ 1 and all n� 0,

then {Extd−iqgr A(M,−)∗|i ≥ 0} is a universal δ-functor because {A(−n)|n ≥ p} is
a set of generators for qgr A for every p. Two universal δ-functors are naturally
isomorphic, and hence each θi is a natural isomorphism.

Let M =
⊕

iMi be a Z-graded module. We say M is left bounded (respectively
right bounded) if Mi = 0 for all i � 0 (respectively i � 0). If A satisfies χ,

then by [AZ, 7.5], each Hq(X,A(i)) is finite dimensional over k and Hd(X,A) :=⊕
i Hq(X,A(i)) is right bounded for all q ≥ 1. For a graded module M =

⊕
iMi,

let M∗ denote
⊕

iM
∗
−i. Hence Hq(X,A)∗ is left bounded for all q ≥ 1. Now we

prove the Serre duality theorem.

Theorem 2.3 (The Serre Duality for proj A). Let A be a graded right noetherian
ring satisfying χ1, and assume that cd( proj A) = d <∞.

1. Suppose Hd(X,A)∗≥0 is a noetherian right A-module. Denote π(Hd(X,A)∗)

by ω0.
(a) For each i, there is a natural transformation

θi : Extiqgr A(−, ω0) −→ Hd−i(X,−)∗

where θ0 is a natural isomorphism.
(b) Suppose A satisfies χ. Then θi are natural isomorphisms for all i if and

only if Hd−i(X,A) is finite dimensional for d > i ≥ 1 and H0(X,A) is left bounded.
2. Conversely, if there is a natural isomorphism

θ0 : Homqgr A(−, ω0) −→ Hd(X,−)∗

for an object ω0 in qgr A, then Hd(X,A)∗≥0 is a noetherian right A-module and

ω0 ∼= π(Hd(X,A)∗).

Proof. Part 1 is an immediate consequence of Theorem 2.2. It remains to prove
part 2. Since A satisfies χ1 and ω0 is an object in qgr A, by [AZ, 4.5], Γ(ω0)≥0 is
a noetherian right A-module and ω0 ∼= π(Γ(ω0)≥0). Then part 2 follows from the
isomorphism

Γ(ω0) ∼=
⊕
i

Hom(A(−i), ω0) ∼=
⊕
i

Hd(X,A(−i))∗ = Hd(X,A)∗.

Following the Serre duality theorem in the commutative case [H2, III.7.6] and
Theorem 2.3, it is reasonable to make the following definition.
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Definition 2.4. (a) Let X = proj A be a projective scheme with cd(X) = d. An
object ω0 in qgr A is called a dualizing sheaf of X if there is a natural isomorphism

θ0 : Homqgr A(−, ω0) −→ Hd(X,−)∗.

(b) Suppose X has a dualizing sheaf ω0. We say X is classical Cohen-Macaulay
if

θi : Extiqgr A(−, ω0) −→ Hd−i(X,−)∗

are natural isomorphisms for all i.

It is easy to see that a dualizing sheaf is unique, up to isomorphism, if it exists.
By the definition, existence of a dualizing sheaf is independent of the choice of
the shift operator. If proj A has a dualizing sheaf ω0, then, for each i, there
is a natural transformation θi : Extiqgr A(−, ω0) −→ Hd−i(X,−)∗. Under some
hypotheses Theorem 2.3 gives a sufficient and necessary condition for a dualizing
sheaf to exist. Namely, to show the existence of a dualizing sheaf is equivalent to
showing that Hd(X,A)∗≥0 is a noetherian right A-module. By [AZ, 7.9], if A is

noetherian and satisfies χ, then Hd(X,A)∗ is a noetherian left A-module. If A is
commutative, then left and right module structures are the same. Hence Theorem
2.3 re-proves the Serre duality theorem in the commutative case.

3. PI rings

It is unknown if Hd(X,A)∗ is a noetherian right A-module for all noetherian
locally finite algebras satisfying χ. This problem is solved for the following case.

Let A be a noetherian graded algebra such that each m-torsion-free prime factor
of A has a homogeneous normal element of positive degree. By [AZ, 8.12(2)], A
satisfies χ and cd( proj A) ≤ Kdim(AA)− 1 <∞ where Kdim is Krull (Rentschler-
Gabriel) dimension. Familiar examples of such rings are noetherian PI rings and
quantum matrix algebras. A bimodule is called noetherian if it is both left and
right noetherian.

Theorem 3.1. Let A be a graded left and right noetherian algebra such that each
m-torsion-free prime factor of A has a normal element of positive degree. Let M
be a graded noetherian A-bimodule. Then Hi(X,M)∗ are noetherian A-bimodules
for all i > 0.

Proof. By [AZ, 7.9], Hi(X,M)∗ are left noetherian for i > 0. We need to show
that these are right noetherian. By [AZ, 7.2.(2)], it suffices to show that Hi

m(M)∗

are right noetherian for all i, where Hi
m(M) is defined by

Hi
m(M) = lim

n→∞
Extigr A(A/mn,M) ∼= lim

n→∞
Extigr A(A/A≥n,M).(3-1)

Since limn→∞ is exact, { Hi
m(M)∗ | i ∈ Z} is a δ-functor in the sense of [H2, p.

205]. By [AZ, 7.2 (2) and 3.6(3)], we have the following statements:
(i) Hi

m(−)∗ = 0 for all i < 0 and i > cd( proj A) + 1.
(ii) H0

m(N)∗ = τ(N)∗ and hence it is always finite dimensional.
(iii) If N is finite dimensional, then H0

m(N)∗ = N∗ and Hi
m(N)∗ = 0 for all i ≥ 1.

(iv) Hi
m(N)∗ is left bounded for all i and all noetherian A-modules N .

Next we use induction on Kdim(MA) to prove that Hi
m(M)∗ are right noetherian

for all i. If Kdim(MA) = 0, i.e., M is finite dimensional, then the statement is
obvious. Now let M be a bimodule with Kdim(MA) = n > 0 and suppose the
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statement holds for all noetherian bimodules N with Kdim(NA) < n. By using a
long exact sequence, we may assume that M is a critical bimodule and has prime
annihilators on both sides. Let P = ann(AM) and Q = ann(MA). Since M is not
m-torsion, both A/P and A/Q are not m-torsion. Let x be a regular normal element
of positive degree in A/P and let σ be the automorphism of A/P determined by
xa = σ(a)x for all a ∈ A/P . We may think M as an (A/P,A)-bimodule. The
twisted module σM is defined by a∗m = σ(a)m for all a ∈ A/P and m ∈M . Hence
σM is an (A/P,A)-bimodule. The left multiplication by x defines a homomorphism
from M to σM(d), where d = deg(x). Since M is critical, we obtain a short exact
sequence of bimodules

0 −→M −→ σM(d) −→ N −→ 0(3-2)

where N = σM(d)/x σM(d). Applying H·m(−)∗ to (3-2), we get

· · · −→ Hi
m(N)∗ −→ Hi

m(σM(d))∗ −→ Hi
m(M)∗ −→ Hi−1

m (N)∗ −→ · · · .(3-3)

Note that the right A-module structure of Hi
m(M)∗ comes from the left A-module

structure of M . Then the map Hi
m(σM(d))∗ −→ Hi

m(M)∗ is the right multiplica-
tion by x. Hence the cokernel of this right multiplication is Hi

m(M)∗/Hi
m(M)∗x,

which is a submodule of Hi−1
m (N)∗ by (3-3). Since M is critical, Kdim(NA) <

Kdim(MA). By the induction hypothesis, Hi−1
m (N)∗ is right noetherian and hence

Hi
m(M)∗/Hi

m(M)∗x is right noetherian. Suppose Hi
m(M)∗/Hi

m(M)∗x =
∑n
i=1 miA

for some mi ∈ Hi
m(M)∗. Since Hi

m(M)∗ is left bounded, by induction on the degree
of elements we obtain that Hi

m(M)∗ =
∑n
i=1miA, which is right noetherian.

The following corollary is an immediate consequence of Theorems 2.3 and 3.1.

Corollary 3.2. Let A be as in Theorem 3.1. Then proj A has a dualizing sheaf.

4. Balanced dualizing complexes

Let C be an abelian category with enough injectives. Let D(C) denote the
derived category of C and D+(C) the subcategory of D(C) consisting of bounded
below complexes. We can define RHomC(M

·, N ·) for N · ∈ D+(C) and M · ∈
D(C), by replacing N · with a quasi-isomorphic complex of injectives. Write D+

f (C)
(respectively Db

f (C)) for the subcategory of bounded below (respectively bounded)
complexes whose cohomologies are noetherian in C. In this section C will be either
QGr A or Gr A for a graded left and right noetherian ring. Regarding shifts, we
denote by M ·[n] the shift by n of the complex M ·, and by M(n) the shift by degree
n as defined before if M is in either QGr A or Gr A. See [Ye] and [H1] for details
on derived categories.

Lemma 4.1. Let M · ∈ Db
f (Gr A) and N · ∈ D+(Gr A), and let M· = π(M ·) and

N · = π(N ·). Then

ExtqQGr A(M·,N ·) ∼= lim
n→∞

ExtqGr A(M ·≥n, N
·)(4-1)

for all q ∈ Z.

Proof. There is a bi-functorial isomorphism

HomQGr A(M,N ) ∼= lim
n→∞

HomGr A(M≥n, N)(4-2)

for all M ∈ gr A and N ∈ Gr A (see [AZ, (2.2.1)]). By the exactness of the functors
M 7−→M≥n and limn→∞, and arguing as in the proof of [Ye, 2.2], we see that the
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derived bi-functor R limn→∞Hom·Gr A(M ·≥n, N
·) is defined for N · ∈ D+(Gr A) and

M · ∈ D(Gr A). We may assume that N · is a bounded below complex of injectives
[Ye, 4.2], and then the R can be omitted.

Now fix N ·. By [H1, I.7.1(i)] the isomorphism (4-2) implies an isomorphism

RHom·QGr A(M·,N ·) ∼= R lim
n→∞

Hom·Gr A(M ·≥n, N
·)

for M · ∈ Db
f (Gr A). The lemma is proved by passing to cohomologies.

Observe that by taking M · = A in (4-1) we get

Hq(X,N ·) ∼= lim
n→∞

ExtqGr A(A≥n, N
·).

By [AZ, 7.2(2)], Hq(X,M) is isomorphic to the local cohomology Hq+1
m (M) for

q ≥ 1, where Hq
m(−) is defined by (3-1). By [Ye, 4.17 and 4.18], if A has a balanced

dualizing complex (see [Ye, 3.3 and 4.1] for the definition), then there is a version
of the local duality theorem. We will use the local duality theorem to prove the
Serre duality theorem for such A.

Theorem 4.2. Let A be a connected graded left and right noetherian ring and let
X = proj A. Suppose that A has a balanced dualizing complex R·.

1. Let M · ∈ Db
f (Gr A) and q ∈ Z. Then

Hq
m(M ·) ∼= Ext−qGr A(M ·, R·)∗,(4-3)

and this is a locally finite and right bounded module.
2. Let R· = π(R·) and M· = π(M ·). Then

Hq(X,M·)∗ ∼= lim
n→∞

Hq+1
m (M ·≥n)∗ ∼= Ext

−(q+1)
QGr A (M·,R·)

= Ext−qQGr A(M·,R·[−1]).(4-4)

In this sense, we call R·[−1] a dualizing complex for proj A.
3. A satisfies the condition χ and cd(X) = d, where −(d+1) = min{ i | Hi(R·) 6=

0 }.
4. Let ω0 = H−(d+1)(R·). Then ω0 is the dualizing sheaf for proj A.
5. The following conditions are equivalent:

(a) X = proj A is classical Cohen-Macaulay.
(b) ω0[d+ 1] is isomorphic to R· in D(QGr A).
(c) Hq(R·) is m-torsion for q > −(d+ 1).

Remark. The dualizing complex R· is a complex of bimodules, but when passing
to QGr A we forget the left module structure of R·.

Proof. 1. This is [Ye, 4.18]. Note that Ext−qGr A(M ·, R·) is a noetherian left A-
module, so Hq

m(M ·) is a locally finite, right bounded module.
2. The exact sequence

0 −→ A≥n −→ A −→ A/A≥n −→ 0,

when considered as a triangle in D(Gr A), yields a long exact sequence

· · · → Hq(M ·)0 → ExtqGr A(A≥n,M
·)→ Extq+1

Gr A(A/A≥n,M
·)→ Hq+1(M ·)0 → · · ·
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for any M · ∈ Db
f (Gr A), where Hq(M ·)0 is the degree zero part of the q-th coho-

mology of M ·. First taking limn→∞ and then replacing M · by M ·≥l in the above,
we have

· · · −→ Hq(M ·≥l)0 −→ Hq(X,M·) −→ Hq+1
m (M ·≥l) −→ Hq+1(M ·≥l)0 −→ · · ·

where M· = π(M ·) = π(M ·≥l). Taking k-linear duals and using the fact that

lim
l→∞

Hq(M ·≥l)
∗
0 = 0,

we obtain the first isomorphism of (4-4). The second one is a consequence of part
1 and Lemma 4.1.

3. By part 1, for every noetherian right module M , Hq
m(M) is right bounded for

all q. By [AZ, 3.8(3)], A satisfies χ.
By [Ye, 4.2], we may assume R· is a minimal injective complex (of right A-

modules), i.e., each Ri is an injective hull of ker(∂i), where ∂i : Ri −→ Ri+1 is the
coboundary map of R·. Since π is exact and has a right adjoint functor [AZ, (2.2.2)],
R· = π(R·) is a minimal injective complex in D+(QGr A). By the definition of d,

we have Hq(R·) = 0 for all q < −(d + 1), and H−(d+1)(R·) 6= 0. Hence Rq = 0 for
all q < −(d+ 1) and, by (4-4),

Hq(X,M) ∼= Ext
−(q+1)
QGr A (M,R·)∗ = 0.

Therefore cd(X) ≤ d. By the definition of dualizing complex, R· ∈ D+
f (Gr A),

whence R· ∈ D+
f (QGr A) and ω0 := H−(d+1)(R·) ∈ qgr A. By (4-3)

HomQGr A(M, ω0) ∼= Ext
−(d+1)
QGr A (M,R·) ∼= Hd(X,M)∗.(4-5)

Thus Hd(X,ω0) 6= 0 and cd(X) = d.
4. Follows immediately from (4-5).
5. (a) ⇔ (b) By Definiton 2.4, X = proj A is classical Cohen-Macaulay if

and only if ExtiQGr A(M, ω0) ∼= Hd−i(X,M)∗ for all i and M. By (4-4), this is
equivalent to

ExtiQGr A(M, ω0) ∼= Ext
i−(d+1)
QGr A (M,R·) = ExtiQGr A(M,R·[−(d+ 1)])(4-6)

for all i and M. But (4-6) holds if and only if R·[−(d + 1)] is a minimal injective
resolution of ω0. This is saying that ω0[d+ 1] is quasi-isomorphic to R·.

(b)⇔ (c) The complex ω0[d+1] is quasi-isomorphic to R· if and only if Hq(R·) =
0 for all q > −(d+ 1). But Hq(R·) = π(Hq(R·)). Therefore Hq(R·) = 0 if and only
if Hq(R·) is m-torsion.

Theorem 4.2.2 tells that if A has a balanced dualizing complex R·, then proj A
has a dualizing complex R·[−1] ∈ D+

f (QGr A). P. Jørgensen in [Jø, 3.3] proved

recently that a dualizing complex always exists in D+(QGr A). The question of
when a dualizing complex exists in D+

f (QGr A) is still open. It was proved in [Ye]
that the following algebras have balanced dualizing complexes:

(a) graded noetherian AS-Gorenstein rings;
(b) graded noetherian rings finite over their centers;
(c) twisted homogeneous coordinate rings.
Finally, we state an immediate corollary of Theorem 4.2 for AS-Gorenstein rings.

Recall that a connected graded ring A with injective dimension d+ 1 is called AS-
Gorenstein if Ext·A(k,A) ∼= k(e)[−(d + 1)] for some e ∈ Z (see [Ye, 4.13(ii)]). By
[Ye, 4.14] (which holds in this case too; the proof is exactly the same as the one of
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[Ye, 4.14]), R· = σA(−e)[d + 1] is a balanced dualizing complex over A for some
algebra automorphism σ.

Corollary 4.3. Let A be a connected graded left and right noetherian AS-Goren-
stein ring of injective dimension d+ 1, and let X = proj A.

1. A satisfies the condition χ.
2. cd(X) = d, and ω0 = A(−e) is the dualizing sheaf for X.
3. X is classical Cohen-Macaulay.

Remark. Presumably the Brown Representability Theorem, as used in [Jø], would
imply that if the functor (Γm(−))∗, where Γm(−) is defined to be H0

m(−) [Ye, page
56], has finite cohomological dimension, then it is representable on D(Gr A) by
(RΓm(A))∗. However this still wouldn’t make (RΓm(A))∗ into a balanced dualizing
complex in the sense of [Ye]. We thank the referee for calling attention to this
point.
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