CONJUGACY CLASSES OF SYMMETRIES
IN ORTHOGONAL GROUPS

DONALD G. JAMES

(Communicated by Ronald M. Solomon)

Abstract. The number of conjugacy classes of symmetries in the integral
orthogonal group of an indefinite \(\mathbb{Z} \)-lattice is determined. The results are
applied to the extended Bianchi groups.

1. Introduction

Let \(V \) be a regular quadratic space, of finite dimension \(n \geq 4 \), over the rational
field \(\mathbb{Q} \) with quadratic form \(Q : V \rightarrow \mathbb{Q} \) and associated bilinear form
\(2f(x, y) = Q(x + y) - Q(x) - Q(y) \). Let \(L \) be a \(\mathbb{Z} \)-lattice on \(V \), let \(O(L) \) be the orthogonal
group of \(L \), and let \(O'(L) \) be its spinor kernel. Then both \(O(L) \) and \(O'(L) \) act on
the symmetries
\[\Psi(x) : y \mapsto y - 2f(x, y)Q(x)^{-1}x, \quad x, y \in L, \]
in \(O(L) \) by conjugation, with \(\phi \Psi(x) \phi^{-1} = \Psi(\phi(x)) \). We study the number of
conjugacy classes under both actions, and then apply the results to the extended
Bianchi groups and Hilbert modular groups.

The lattice \(L \) represents \(c \in \mathbb{Z} \) if there exists an \(x \in L \) with \(Q(x) = c \). The
representation is primitive if \(\mathbb{Z}x \) is a direct summand of \(L \). Since the symmetry
\(\Psi(x) \) is to be integral, only primitive representations that satisfy the extra condi-
tion \(2f(x, L) \subseteq c\mathbb{Z} \) will be considered. Let \(N(L, c) \) be the number of these primitive
representations of \(c \) modulo the action of \(O(L) \). Then \(N(L, c) \) also counts the num-
ber of conjugacy classes of symmetries \(\Psi(x) \) with \(x \) primitive and \(Q(x) = c \). Let
\(N'(L, c) \) be the number of these primitive representations of \(c \) modulo the action of
\(O'(L) \), and let \(N'(L_p, c) \) be the corresponding number of primitive representations
by the local lattice \(L_p \) over the \(p \)-adic integers \(\mathbb{Z}_p \). Using Kneser's Strong Approxima-
tion Theorem to set up a bijection between the global and corresponding set of
local orbits, as in the proof of Theorem 2.3 in [5], or Theorem 4.1 in [6], gives the
following product formula.

Theorem 1.1. Let \(L \) be a lattice on \(V \) with \(f(L, L) \subseteq \mathbb{Z} \) and discriminant \(D \).
Assume \(c \neq 0 \) and the Witt index \(i_\infty(V \perp (-c)) \geq 2 \). Then, for \(n \geq 4 \),
\[N'(L, c) = \prod_{p \mid 2D} N'(L_p, c) < \infty, \]

Received by the editors October 18, 1995.
1991 Mathematics Subject Classification. Primary 11E57, 11F06, 20G30.
The author was supported by NSA grant MDA904-94-H-2034 and NSF grant DMS-95-00533.
The number of conjugacy classes of symmetries under the action of \(O'(L) \) is then determined from the action of \(-I \) on the \(O'(L) \)-orbits. The value \(N(L, c) \) can be studied via the action of the quotient group \(O(L)/O'(L) \) on the \(O'(L) \)-orbits. These methods will be used to study the conjugacy classes of symmetries in \(O(L) \) in a special case corresponding to the Bianchi groups and Hilbert modular groups \(\text{PSL}(2, O_d) \). Related methods were used in [6] to classify the maximal non-elementary Fuchsian subgroups of the Bianchi groups up to conjugacy. In [11], Vulakh studied the conjugacy classes of reflections in the extended Bianchi group \(RB_d \). Via the identification of \(RB_d \) with a suitable group \(O(L) \) (see [2, §11] or [10]), this is essentially the same as studying the conjugacy classes of symmetries for this \(O(L) \). Theorem 3.5 is a generalization of one of Vulakh’s results. Theorem 3.6 gives an analogue for the conjugacy classes in \(RB_d \) under the action of the Bianchi group. A Hilbert modular group analogue is simultaneously established. See also [2, §11] for an earlier special case obtained using Siegel’s analytic theory of indefinite forms.

The next section contains some general results evaluating \(N'(L_p, c) \). They can easily be modified to give a function field analogue where \(L \) is replaced by the polynomial ring \(F[X] \) (with \(2 \neq 0 \)).

2. LOCAL SPINOR ORBITS

Local isometry invariants on \(x \in L_p \) under the action of \(O(L_p) \) are given in [7] and [9]. In general they are complicated; however, for odd \(p \), the restriction \(f(x, L_p) \subseteq Q(x)Z_p \) means that \(Z_p \cdot x \) splits \(L_p \) as a rank one orthogonal summand (see [8, §92.6]). For each prime \(p \) let

\[
L_p = J_1 \perp \cdots \perp J_t
\]

be a Jordan splitting of \(L_p \) (see [8, §91C]), where each \(J_i \) is a \(p^{r_i} \)-modular lattice, \(r_1 < \cdots < r_t \), and \(n_i = \text{rank } J_i \) are invariants of \(L_p \). For odd \(p \) the discriminants \(d_i = (\det J_i)u_p^2 \), where \(u_p \) denotes the \(p \)-adic units, are also invariants. Note, for \(p \) odd, \(|SO(L_p) : O'(L_p)| = 4 \) whenever some \(n_i \geq 2 \), and the \(r_i \) are not all even or not all odd (see [8, §92.5]). When all \(r_i \) have the same parity, \(|SO(L_p) : O'(L_p)| \leq 2 \). Also, \(SO(L_p) = O'(L_p) \) if and only if all \(n_i \) is 1, and all the square classes \(d_i Q_p^{*2} \) are the same (in particular, the \(r_i \) all have the same parity).

If \(\Psi(x) \in O(L) \) with \(x \) primitive and \(Q(x) = c \), then \(Z_p \cdot x \) splits \(L_p \) as an orthogonal summand for each odd \(p \). In particular, this implies that a Jordan splitting can be chosen with \(Z_p \cdot x \subseteq J_i \) for some \(i \). Hence \(c \cdot p^{-r_i} \in u_p \), and this is therefore a necessary condition for \(N(L_p, c) > 0 \).

Theorem 2.1. Let \(p \) be odd. Assume \(c^{-r_i} \in u_p \) for some \(i \). Then

1. \(N'(L_p, c) = 0 \) if \(n_i = 1 \) and \((c/d_i)^{r_i} = -1 \).
2. \(N'(L_p, c) = 2 \) if \(n_i = 1 \), \((c/d_i)^{r_i} = 1 \), and \(r_j - r_i \) is odd for \(j \neq i \).
3. \(N'(L_p, c) = 2 \) if all \(n_j = 1 \), \((c/d_i)^{r_i} = 1 \), and the \(d_j Q_p^{*2} \), for \(j \neq i \), take at most two values, and these values are not \(c Q_p^{*2} \).
4. \(N'(L_p, c) = 2 \) if \(n_i = 2 \), all other \(n_j \) is 1, and the \(d_j Q_p^{*2} \), for \(j \neq i \), and \(d_i c^{-1} Q_p^{*2} \) take at most two values, and the product of any two values is not \(c Q_p^{*2} \) with \(\epsilon \) a non-square unit.
5. \(N'(L_p, c) = 1 \) otherwise.
Proof. Assume first $n_i = 1$. Let $x \in L_p$ be primitive with $Q(x) = c$. Then we may choose $J_i = \mathbb{Z}_p x$ and hence $c \in d_i \mathbb{Z}_p^2$. In this case, the representations of c by x and $-x$ are not spinor equivalent when $r_j - r_i$ is odd for all $j \neq i$. For assume $\phi \in O'(L_p)$ with $\phi(x) = -x$. Then $\Psi(x)\phi$ fixes x, and hence can be viewed as an isometry on the orthogonal complement of J_i. Therefore, by [8, §92.4], $\Psi(x)\phi$ is a product of an odd number of symmetries $\Psi(y)$ with each $Q(y) \equiv r_j \mod{r_i}$ a unit for some j. Calculating spinor norms then gives a contradiction. A similar argument holds if all $n_j = 1$ as in case 3. Any two representations are $SO(L_p)$-equivalent (see [7]), and it follows that $N'(L_p, c) \leq 2$ if some $n_j \geq 2$, since the orthogonal complement of x then admits isometries with all spinor norms in $u_j \mathbb{Q}_p^2$. When all $n_j = 1$, it still follows that $N'(L_p, c) \leq 2$, because if all the $d_j \mathbb{Q}_p^2, j \neq i$, are the same, then $\left[SO(L_p) : O'(L_p)\right] \leq 2$. In case 4, x and $\theta(x)$ are not spinor equivalent for $\theta \in SO(J_i)$ with spinor norm $c \mathbb{Q}_p^2$, take $\theta(x) = -x$ if $d_i \not\equiv \mathbb{Q}_p^2$.

Now consider the case $n_i \geq 3$, or $n_i = 2$ and $n_j \geq 2$ for some $j \neq i$. If x and y both represent c, by [7] there exists $\phi \in SO(L_p)$ with $\phi(x) = y$. It is easy to adjust and get $\phi \in O'(L_p)$ using the orthogonal complement of x. The remaining cases are similar.

Corollary 2.2. The two spinor orbits in case 4 with $d_i \not\equiv \mathbb{Q}_p^2$, 2 or 3, are interchanged by $-I$. The two spinor orbits in case 2 are interchanged by any $\phi \in SO(L_p)$ with spinor norm $\eta \mathbb{Q}_p^2$, η a unit, and are fixed by all $\psi \in SO(L_p)$ with spinor norm $\eta \mathbb{Q}_p^2$.

Proof. Assume $Q(\pm x) = c$. There exists $\theta \in O(L_p)$ fixing x and with $\phi \theta \Psi(x) \in O'(L_p)$, using the orthogonal complement of x. Hence x is spinor equivalent to $\phi(-x)$. For the remaining part choose $\theta \in SO(L_p)$ fixing x and with $\psi \theta \in O'(L_p)$. Then x is spinor equivalent to $\psi(x)$.

A dyadic unimodular lattice L_2 is even when $Q(L_2) \subseteq 2\mathbb{Z}_2$. Otherwise L_2 is odd and has an orthogonal basis e_1, \ldots, e_n. Then $x = \sum a_i e_i \in L_2$ is characteristic if all coefficients a_i are units (see [5], [9]).

Theorem 2.3. Let L_2 be a dyadic unimodular lattice. Then

1. $N'(L_2, c) = 0$ when $c \in 4\mathbb{Z}_2$, or L_2 is even with c a unit.
2. $N'(L_2, c) = 3$ when L_2 is odd and $c \equiv \sum Q(e_i) \not\equiv 0, 4 \mod{8}$.
3. $N'(L_2, c) = 1$ otherwise.

Proof. Let $x \in L_2$ be primitive with $Q(x) = c$. Then $2f(x, L_2) \subseteq c\mathbb{Z}_2$ forces $c|2$. When L_2 is even, it is split by a hyperbolic plane $\mathbb{Z}_2 u + \mathbb{Z}_2 v$, and x is spinor equivalent to $u + 2^{-1}cv$ (see [5] or [9, §2]). Now assume that L_2 is odd and $x = \sum a_i e_i$ is characteristic. Then $c = Q(x) = \sum a_i^2 Q(e_i) = \sum Q(e_i) \mod{8}$. By Hensel’s lemma, this is a necessary and sufficient condition for the existence of a characteristic representation of c. When $c \equiv 0 \mod{4}$ the restriction $c|2$ is violated. The result follows by strengthening the arguments in Lemmas 4.3 and 5.7 in [5], or as in Theorem 2.1 above using [9, §2].

Corollary 2.4. When $N'(L_2, c) = 3$, the two orbits corresponding to the characteristic representations are interchanged by $-I$ if n is odd, but are fixed by $-I$ if n is even.

Proof. The action of each $\Psi(e_i)$ interchanges the two characteristic orbits (see Theorem 2.2 in [5]).
For the final two theorems in this section we assume, as in Theorem 1.1, that \(L \) is a \(\mathbb{Z} \)-lattice with \(f(L,L) \subseteq \mathbb{Z} \) and \(n \geq 4 \), that \(c \neq 0 \) and the index \(i_{\infty}(V \perp (-c)) \geq 2 \). Also assume \(L_2 \) is unimodular.

Theorem 2.5. Necessary and sufficient conditions for \(N(L,c) > 0 \) are:
1. \(c \neq 0 \mod 4 \), and \(2|c \) when \(L_2 \) is even,
2. at each odd prime, \(cp^{-r_i} \in u_p \) for some \(i \), and moreover, if \(n_i = 1 \) then \(\left(\frac{c}{d} \right) = 1 \).

By Theorem 1 in [4], it suffices to assume \(V \) indefinite in Theorem 2.5 (instead of \(i_{\infty}(V \perp (-c)) \geq 2 \)).

Let \(m \) be the number of odd primes \(p \) where \(N'(L_p,c) = 2 \).

Theorem 2.6. Assume \(N(L,c) > 0 \). When \(m \geq 1 \) and not only case 4 with \(d_i \in \mathbb{Q}_p^2 \) occurs, the number of conjugacy classes of symmetries \(\Psi(x) \) with \(x \) primitive and \(Q(x) = c \) under the action of \(O'(L) \) is \(2^{m-1}N'(L_2,c) \). If \(m = 0 \) and \(N'(L_2,c) = 3 \), the number of conjugacy classes is 2 when \(n \) is odd, and 3 when \(n \) is even.

Proof. When \(m \geq 1 \), this follows since \(\Psi(x) = \Psi(-x) \), but \(x \) and \(-x \) are in different \(O'(L) \)-orbits by Corollary 2.2. Use 2.4 when \(m = 0 \).

The result is different if \(m \geq 1 \) and only case 4 with \(d_i \in \mathbb{Q}_p^2 \) occurs, since \(-I\) now fixes all local \(p \)-adic orbits for \(p \) odd.

3. Extended Bianchi groups

Let \(\mathcal{O}_d \) be the ring of integers in \(\mathbb{Q} \big(\sqrt{d} \big) \), where \(d \) is a square-free integer. It was shown in [6] that the Bianchi group \(\text{PSL}(2, \mathcal{O}_d) \), for \(d < 0 \) and \(d \equiv 2, 3 \mod 4 \), is isomorphic to \(O'(L) \), where

\[
L = \mathbb{Z}r \perp \mathbb{Z}s \perp (\mathbb{Z}u + \mathbb{Z}v) = B \perp H
\]

is the lattice with \(Q(r) = 2 \), \(Q(s) = -2d \), and \(u, v \) are isotropic with \(f(u,v) = d \). The extended Bianchi group \(B_d \), namely, the maximal discrete extension of \(\text{PSL}(2, \mathcal{O}_d) \) in \(\text{PSL}(2, \mathbb{C}) \), is isomorphic to \(\text{PSO}(L) \). The extended Bianchi group \(RB_d \) is \(B_d \) with the action of complex conjugation adjoined; it is isomorphic to \(\text{PO}(L) \). The Hilbert modular group, where \(d > 0 \), is also isomorphic to \(O'(L) \). For \(d \equiv 1 \mod 4 \), \(L \) must be replaced by \(M = L + \mathbb{Z}2(1-r-s) \). These isomorphisms are related to those constructed over commutative rings in [3, §7.3B].

Let \(J = \{ x \in L \mid Q(x) \in 2d\mathbb{Z} \} = \mathbb{Z}dr \perp \mathbb{Z}s \perp H \)
and
\[
K = \{ x \in L \mid f(x, J) \subseteq 2d\mathbb{Z} \} = \mathbb{Z}r \perp \mathbb{Z}s \perp 2H.
\]

Then \(J \) and \(K \) are sublattices of \(L \) that are invariant under the action of \(O(L) \). Note that \(O(J) = O(L) \). Clearly \(O(L) \subseteq O(J) \). Conversely, let \(\phi \in O(J) \) with \(\phi(r) \in V \).
Since \(f(\phi(r), J) = f(r, J) = 2d\mathbb{Z} \), it follows that \(\phi(r) \in K \) and \(\phi \in O(L) \). Therefore, scaling \(J \) by \(d^{-1} \), \(O(L) \) is isomorphic to the orthogonal group of the integral form \(dx_1^2 - x_2^2 + x_3x_4 \) used in [2].

We now study the conjugacy classes of symmetries in \(O(L) \) and \(O(M) \). For the symmetry \(\Psi(x) \), with \(x \) primitive in \(L \) and \(Q(x) = 2c \), to be integral we need \(f(x, L) \subseteq c\mathbb{Z} \), and hence \(Q(x) \) divides \(4d \). First determine \(N'(L,2c) = \prod_{p \mid 2d} N'(L_p, 2c) \) for each \(Q(x) = 2c|4d \). Then \(N(L,2c) \) is obtained from the action
of the quotient group $O(L)/O'(L)$ on the $O'(L)$-orbits. From [6], $[O(L) : O'(L)] = 2^{t+2}$ where t is the number of distinct prime divisors of the discriminant of $\mathbb{Q}(\sqrt{d})$.

For $w \in \mathbb{Z}r \perp \mathbb{Z}d^{-1}s$ and $x \in L$, let

$$E(u, w)(x) = x - f(u, x)w + f(w, x)u - 2^{-1}Q(w)f(u, x)u.$$

The Eichler transformation $E(u, w)$ lies in $O'(L)$.

Theorem 3.1. Let d be even. Then

1. $N'(L_2, 2c) = 0$ for $c \equiv 0 \mod 4$.
2. $N'(L_2, 2c) = 1$ for $c \equiv 1 + d, -3 \mod 8$.
3. $N'(L_2, 2c) = 2$ for $c \equiv \pm 2 \mod 8$.
4. $N'(L_2, 2c) = 3$ for $c \equiv 1, 1 - d \mod 8$.

Proof. Let $x = a_1t + a_2s + bu + b'v \in L_2$ with $Q(x) = 2c$. When $4|c$ the condition $f(x, L_2) \subseteq 4\mathbb{Z}_2$ forces $x \in 2L_2$ so that $N'(L_2, 2c) = 0$. Assume $c \not\equiv 0 \mod 4$. If $x \notin K_2$, we may assume b is a unit and then x is spinor equivalent, via a suitable $E(u, w) \in O'(L)$, to $bu + (bd)^{-1}cv$ for c even, or to $r + bu + (bd)^{-1}(c-1)v$ for c odd.

The map τ fixing r and s, and sending u to $b^{-1}u$, has spinor norm $b\mathbb{Q}_2^2$. In both cases there exists $\sigma \in SO(L)$ fixing x with spinor norm $b\mathbb{Q}_2^2$ (use Theorem 3.14 in [1] on the orthogonal complement of x when c is odd). Then $\tau\sigma \in O'(L_2)$, so we may assume $b = 1$. Thus, up to spinor equivalence, there is only one representation $x \notin K_2$ with $Q(x) = 2c$.

If $x \in K_2$, then $c \equiv a_1^2 - da_2^2 \equiv 1, 1 - d, \pm 2 \mod 8$. Then, by modifying the previous argument, get $b = 2$. When c is even, a suitable $E(v, w)$ sends x to a uniquely determined $ar + s + 2u + 2b'v$ with $a = 0$ or 2. When c is odd, x can be sent to $\pm r + as + 2u + 2b'v$, with $a = 0$ or 1 unique for x. The two sign choices lie in different spinor orbits by Theorem 3.14(i) in [1], since the orthogonal complement of x only allows isometries with spinor norm a unit.

Corollary 3.2. $N(L_2, 2c) = 2$ when $c \equiv 1, 1 - d, \pm 2 \mod 8$.

Proof. The $x \in K_2$ are analogous to the characteristic x in the dyadic unimodular case. They determine an orbit that cannot be interchanged by $O(L_2)$ with an orbit given by an $x \notin K_2$. The two characteristic orbits are interchanged by $-I$ when $c \equiv 1, 1 - d \mod 8$.

Theorem 3.3. Let $d \equiv 3 \mod 4$. Then

1. $N'(L_2, 2c) = 0$ for $c \equiv 0 \mod 4$.
2. $N'(L_2, 2c) = 1$ for $c \equiv 2, 3 \mod 4$.
3. $N'(L_2, 2c) = 3$ for $c \equiv 1 \mod 4$.

Proof. Let $x = a_1t + a_2s + b_1u + b_2v \in L_2$ be primitive with $Q(x) = 2c$ and $f(x, L_2) \subseteq c\mathbb{Z}_2$. Then $c|2, c|b_1$ and $c|b_2$. Hence there are no solutions when $c \equiv 0 \mod 4$, and x is spinor equivalent to $r + s + 2u + 2b'v \in K_2$ when $c \equiv 2 \mod 4$. Now assume c is a unit. Then $u + cv$ is a representation of $2c$, and $r + 2u + (2d)^{-1}(c-1)v$ and $s + 2u + (2d)^{-1}(c+d)v \in K_2$ give spinor inequivalent representations when $c \equiv 1 \mod 4$. These are distinct by [1], and are the only ones by arguments similar to those in Theorem 3.1.

Corollary 3.4. $N(L_2, 2c) = 2$ when $c \equiv 1 \mod 4$.

Proof. The two orbits corresponding to the $x \in K_2$ are interchanged by $\Psi(r - s) \in O(L_2)$.

For p a prime dividing d, put $d = pq$ and choose $a, b \in \mathbb{Z}$ with $aq + bp = 1$. Then $\sigma(p) = -\Psi(u + bv)\Psi(bpv + au + bv) \in SO(L)$ has spinor norm $pQ^{a,b}$. Let $m = m(c)$ be the number of odd primes dividing d with $(p, c) = 1$ and $(\frac{c}{p}) = 1$. The following gives the number $N(L, c)$ of conjugacy classes under $O(L)$ of symmetries $\Psi(x)$ with x primitive and $Q(x) = 2c$.

Theorem 3.5. Assume that $c > 0$ when $d < 0$, that $N(M, 2c) > 0$ when $d \equiv 1 \mod 4$, and $N(L, 2c) > 0$ when $d \equiv 2, 3 \mod 4$. Then

1. $N(M, 2c) = 2^{-m}N'(M, 2c) = 1$ for $d \equiv 1 \mod 4$.
2. $N(L, 2c) = 2^{-m}N'(L, 2c) = N'(L_2, 2c)$ for $c \not\equiv 1, 1 - d \mod 8$ when d is even.
3. $N(L, 2c) = 1$ and $N'(L, 2c) = 2^m$ for $c \equiv 2, 3 \mod 4$ when $d \equiv 3 \mod 4$.
4. $N(L, 2c) = 2$ and $N'(L, 2c) = 2^m 3$ for $c \equiv -d \equiv 1 \mod 4$, and for $c \equiv 1, 1 - d \mod 8$ when d is even.

Proof. When $d \equiv 1 \mod 4$, M_2 is an even unimodular lattice and hence, by Theorems 1.1 and 2.1, $N'(M, 2c) = 2^m$. The group $O(M)$ is generated over $O'(M)$ by $\sigma(p_i), 1 \leq i \leq t$, $\Psi(u - v)$ and $\Psi(u + v)$. The result now follows since $\sigma(p_i)$ with $(p_i, c) = 1$ interchanges the two $O'(M_{p_i})$-orbits and leaves all other $O'(M_{p_i})$-orbits unchanged by Corollary 2.2. Each $\sigma(p)$ corresponding to a p counted in m thus independently halves the total number of $O'(M)$-orbits. Thus $N(M, 2c) = 1$.

The argument for d even is essentially the same, with $\sigma(p)$ having no effect on the local dyadic orbits for odd p. By Corollary 3.2 the $O'(L_2)$-orbits are only effected by $O(L)$ when $c \equiv 1, 1 - d \mod 8$, and then $-I$ reduces the number of dyadic orbits from 3 to 2.

For $d \equiv 3 \mod 4$ the dyadic orbits must again be considered when $c \equiv 1 \mod 4$. Now

$$\Psi(adr + as - 2abu - 2v)\Psi(v - au) \in SO(L),$$

where $2q = 1 - d$ and $aq - 2b = 1$, has spinor norm $2Q^{a,b}$, interchanges the two dyadic orbits corresponding to the representatives from K_2, and fixes the local orbits at odd primes by Corollary 2.2.

This is essentially a refined version of Theorem 11 in [11] where only an upper bound is given for the total number of conjugacy classes of reflections in RB_d. Explicit examples, similar to those given in Theorem 11.3 of [2] and Theorem 12 of [11], can be constructed from the local information. That $N(M, 2c) = 1$ also follows from Theorems 2 and 4 in [4].

Theorem 3.6. Assume $d \equiv 2, 3 \mod 4$, that $c > 0$ when $d < 0$, and $N(L, 2c) > 0$. When $m \geq 1$, the number of conjugacy classes of symmetries $\Psi(x)$ with x primitive and $Q(x) = 2c|4d$, under the action of $O'(L)$, is $2^{m-1}N'(L_2, 2c)$. When $m = 0$, this number is $N(L_2, 2c)$, except for $c \equiv -d \equiv 1 \mod 4$ where it is 3.

Proof. The action of $-I$ halves the number of orbits by interchanging in pairs the local $O'(L)$-orbits at odd primes when $m > 0$. Use Corollary 3.2 when $m = 0$. This essentially gives the number of conjugacy classes of reflections in RB_d under the action of $PSL(2, O_d), d < 0$. The corresponding result for $O(M), d \equiv 1 \mod 4$, is already covered in Theorem 2.6.
REFERENCES

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
E-mail address: james@math.psu.edu