Coactions of Hopf algebras on Cuntz algebras and their fixed point algebras
HTML articles powered by AMS MathViewer
- by Anna Paolucci
- Proc. Amer. Math. Soc. 125 (1997), 1033-1042
- DOI: https://doi.org/10.1090/S0002-9939-97-03595-8
- PDF | Request permission
Abstract:
We study coactions of Hopf algebras coming from compact quantum groups on the Cuntz algebra. These coactions are the natural generalization to the coalgebra setting of the canonical representation of the unitary matrix group $U(d)$ as automorphisms of the Cuntz algebra $O_d$.
In particular we study the fixed point subalgebra under the coaction of the quantum compact groups $U_q(d)$ on the Cuntz algebra $O_d$ by extending to any dimension $d<\infty$ a result of Konishi (1992).
Furthermore we give a description of the fixed point subalgebra under the coaction of $SU_q(d)$ on $O_d$ in terms of generators.
References
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no.Β 2, 173β185. MR 467330, DOI 10.1007/BF01625776
- Joachim Cuntz, Regular actions of Hopf algebras on the $C^\ast$-algebra generated by a Hilbert space, Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991) Res. Notes Math., vol. 5, A K Peters, Wellesley, MA, 1993, pp.Β 87β100. MR 1259060
- Sergio Doplicher and John E. Roberts, Duals of compact Lie groups realized in the Cuntz algebras and their actions on $C^\ast$-algebras, J. Funct. Anal. 74 (1987), no.Β 1, 96β120. MR 901232, DOI 10.1016/0022-1236(87)90040-1
- K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras. I. General theory, Comm. Math. Phys. 125 (1989), no.Β 2, 201β226. MR 1016869, DOI 10.1007/BF01217906
- Kassel, (1994), Quantum Groups, Springer Verlag.
- H. Tjerk Koelink, On $*$-representations of the Hopf $*$-algebra associated with the quantum group $\textrm {U}_q(n)$, Compositio Math. 77 (1991), no.Β 2, 199β231. MR 1091898
- A. Ocneanu, (1972), Path algebras, A.M.S. meeting in Santa Cruz.
- A. Van Daele, Dual pairs of Hopf $*$-algebras, Bull. London Math. Soc. 25 (1993), no.Β 3, 209β230. MR 1209245, DOI 10.1112/blms/25.3.209
- Yuji Konishi, Masaru Nagisa, and Yasuo Watatani, Some remarks on actions of compact matrix quantum groups on $C^*$-algebras, Pacific J. Math. 153 (1992), no.Β 1, 119β127. MR 1145917, DOI 10.2140/pjm.1992.153.119
- E. Witten, (1986), Noncommutative geometry and string field theory, Nuclear Physics B 268, p. 253β294.
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no.Β 4, 613β665. MR 901157, DOI 10.1007/BF01219077
- S. L. Woronowicz, Twisted $\textrm {SU}(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no.Β 1, 117β181. MR 890482, DOI 10.2977/prims/1195176848
- S. L. Woronowicz, Tannaka-KreΔn duality for compact matrix pseudogroups. Twisted $\textrm {SU}(N)$ groups, Invent. Math. 93 (1988), no.Β 1, 35β76. MR 943923, DOI 10.1007/BF01393687
- S. L. Woronowicz, Compact quantum groups, preprint March 1992.
Bibliographic Information
- Anna Paolucci
- Affiliation: The Fields Institute, 185 Columbia St. West, Waterloo, Ontario, Canada N2L 5Z5
- Address at time of publication: School of Mathematics, University of Leeds, LS2 9JT United Kingdom
- Email: paolucci@amsta.leeds.ac.uk
- Received by editor(s): August 4, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1033-1042
- MSC (1991): Primary 46M05, 16W30, 81R50
- DOI: https://doi.org/10.1090/S0002-9939-97-03595-8
- MathSciNet review: 1350959