Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups
HTML articles powered by AMS MathViewer

by Didier Arnal and Jean Ludwig
Proc. Amer. Math. Soc. 125 (1997), 1071-1080
DOI: https://doi.org/10.1090/S0002-9939-97-03608-3

Abstract:

We give a new proof of a weak Paley-Wiener theorem for nilpotent Lie groups due to Lipsman and Rosenberg and we introduce a general notion of Q.U.P for any unimodular locally compact group.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A30
  • Retrieve articles in all journals with MSC (1991): 43A30
Bibliographic Information
  • Didier Arnal
  • Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
  • Email: arnal@poncelet.univ-metz.fr
  • Jean Ludwig
  • Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
  • Email: ludwig@poncelet.univ-metz.fr
  • Received by editor(s): June 12, 1995
  • Received by editor(s) in revised form: September 21, 1995
  • Communicated by: Roe Goodman
  • © Copyright 1997 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 125 (1997), 1071-1080
  • MSC (1991): Primary 43A30
  • DOI: https://doi.org/10.1090/S0002-9939-97-03608-3
  • MathSciNet review: 1353372