Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups
HTML articles powered by AMS MathViewer
- by Didier Arnal and Jean Ludwig
- Proc. Amer. Math. Soc. 125 (1997), 1071-1080
- DOI: https://doi.org/10.1090/S0002-9939-97-03608-3
- PDF | Request permission
Abstract:
We give a new proof of a weak Paley-Wiener theorem for nilpotent Lie groups due to Lipsman and Rosenberg and we introduce a general notion of Q.U.P for any unimodular locally compact group.References
- W. O. Amrein and A. M. Berthier, On support properties of $L^{p}$-functions and their Fourier transforms, J. Functional Analysis 24 (1977), no. 3, 258–267. MR 0461025, DOI 10.1016/0022-1236(77)90056-8
- D. Arnal and J.-C. Cortet, $\ast$-products in the method of orbits for nilpotent groups, J. Geom. Phys. 2 (1985), no. 2, 83–116. MR 845469, DOI 10.1016/0393-0440(85)90010-5
- Didier Arnal and Simone Gutt, Décomposition de $L^2(G)$ et transformation de Fourier adaptée pour un groupe $G$ nilpotent, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 25–28 (French, with English summary). MR 929272
- Michael Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180–183. MR 780328, DOI 10.1016/0022-247X(85)90140-4
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- Michael Cowling, John F. Price, and Alladi Sitaram, A qualitative uncertainty principle for semisimple Lie groups, J. Austral. Math. Soc. Ser. A 45 (1988), no. 1, 127–132. MR 940530, DOI 10.1017/S144678870003233X
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Jacques Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 13–25 (French). MR 136684, DOI 10.1007/BF02698776
- Siegfried Echterhoff, Eberhard Kaniuth, and Ajay Kumar, A qualitative uncertainty principle for certain locally compact groups, Forum Math. 3 (1991), no. 4, 355–369. MR 1115952, DOI 10.1515/form.1991.3.355
- Tamás Matolcsi and József Szűcs, Intersection des mesures spectrales conjuguées, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A841–A843 (French). MR 326460
- G. Garimella, Un théorème de Paley-Wiener pour les groupes de Lie nilpotents, preprint (1995).
- Jeffrey A. Hogan, A qualitative uncertainty principle for unimodular groups of type $\textrm {I}$, Trans. Amer. Math. Soc. 340 (1993), no. 2, 587–594. MR 1102222, DOI 10.1090/S0002-9947-1993-1102222-4
- R. L. Lipsman and J. Rosenberg, The behavior of Fourier Transforms For Nilpotent Lie groups, preprint 1994.
- J. Ludwig, Good ideals in the group algebra of a nilpotent Lie group, Math. Z. 161 (1983), 195–210.
- Jean Ludwig and Hamid Zahir, On the nilpotent $*$-Fourier transform, Lett. Math. Phys. 30 (1994), no. 1, 23–34. MR 1259193, DOI 10.1007/BF00761419
- J. D. Moss Jr., A Paley-Wiener theorem for selected nilpotent Lie groups, J. Funct. Anal. 114 (1993), no. 2, 395–411. MR 1223707, DOI 10.1006/jfan.1993.1071
Bibliographic Information
- Didier Arnal
- Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
- Email: arnal@poncelet.univ-metz.fr
- Jean Ludwig
- Affiliation: Département de Mathématiques, Université de Metz, Laboratoire Méthodes Mathé- matiques pour l’Analyse des Systèmes, URA CNRS 399, Ile du Saulcy, 57045 Metz cedex, France
- Email: ludwig@poncelet.univ-metz.fr
- Received by editor(s): June 12, 1995
- Received by editor(s) in revised form: September 21, 1995
- Communicated by: Roe Goodman
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1071-1080
- MSC (1991): Primary 43A30
- DOI: https://doi.org/10.1090/S0002-9939-97-03608-3
- MathSciNet review: 1353372