HYPERSURFACES IN A SPHERE WITH CONSTANT MEAN CURVATURE

ZHONG HUA HOU

(Communicated by Peter Li)

ABSTRACT. Let M^n be a closed hypersurface of constant mean curvature immersed in the unit sphere S^{n+1}. Denote by S the square of the length of its second fundamental form. If $S < 2\sqrt{n-1}$, M is a small hypersphere in S^{n+1}. We also characterize all M^n with $S = 2\sqrt{n-1}$.

1. INTRODUCTION

Let M^n be a closed submanifold with parallel mean curvature vector field immersed in the unit sphere S^{n+p}. Denote by H the length of the mean curvature vector field and by S the square of the length of the second fundamental form of M^n. It is important to characterize those M immersed as n-spheres in S^{n+p} by H and S.

When M is minimal, J. Simons [9] obtained a pinching constant $n/(2 - 1/p)$ of S and Chern-do Carmo-Kobayashi [3] showed that it is sharp and characterized all M with $S = n/(2 - 1/p)$. M. Okumura [6, 7] first discussed the general case and gave a pinching constant of S, but it is not sharp. Recently the sharp ones were obtained by H. Alencar-M. do Carmo [1] for $p = 1$, W. Santos [8] for $p > 1$ and H. W. Xu [11] for $p \geq 1$ respectively. But all of them were expressed by the mean curvature H. S. T. Yau [12] obtained a pinching constant for $p > 1$ which depended only on n and p. H. W. Xu [10] improved Yau's result, but far from sharpness.

In the present paper, we shall give a pinching constant for $p = 1$ which depends only on n and show the sharpness of it. More precisely, we want to prove the following theorems:

Theorem A. Let M^n be a hypersurface of constant mean curvature immersed in S^{n+1} with constant length of the second fundamental form. Then:

1. If $S < 2\sqrt{n-1}$, M^n is locally a piece of small hypersphere $S^n(r)$ of radius $r = \sqrt{n/(n + S)}$.
2. If $S = 2\sqrt{n-1}$, M is locally a piece of either $S^n(r_0)$ or $S^1(r) \times S^{n-1}(s)$ where $r_0^2 = n/(n + 2\sqrt{n-1})$, $r^2 = 1/(\sqrt{n-1} + 1)$ and $s^2 = \sqrt{n-1}/(\sqrt{n-1} + 1)$.

Theorem A'. Let M^n be a closed hypersurface of constant mean curvature immersed in S^{n+1}. Then:

1. If $S < 2\sqrt{n-1}$, M^n is a small hypersphere $S^n(r)$ of radius $r = \sqrt{n/(n + S)}$.

Received by the editors July 27, 1995.
1991 Mathematics Subject Classification. Primary 53C42, 53A10.

©1997 American Mathematical Society
(2) If \(S = 2\sqrt{n-1} \), \(M \) is either a small hypersphere \(S^n(r_0) \) or a \(H(r) \)-torus \(S^1(r) \times S^{n-1}(s) \), where \(r_0, r \) and \(s \) are taken as before.

The author would like to express deep gratitude to Professor S. Tanno for his continuous encouragement and patient advice.

2. PROOF OF THE THEOREMS

Let \(M \) be a closed hypersurface immersed in the unit sphere \(S^{n+1} \). Take a local orthonormal coframe field \(\{\omega_i\}_{i=1}^n \) on \(M \). Then the second fundamental form can be expressed as \(\omega = (h_{ij})_{n \times n} \). The mean curvature \(H \) and the square of the length of the second fundamental form \(S \) are defined by
\[
H = \frac{1}{n} \sum_i h_{ii}, \quad S = \sum_{i,j} (h_{ij})^2.
\]
From now on, we shall always use \(i, j, k, \ldots \) for indices running from 1 to \(n \).

Denote the covariant differentials of \(\{h_{ij}\} \) by \(\{h_{ijk}\} \) and \(\{h_{ijkl}\} \). Then the Laplacian of \(h_{ij} \) is defined by \(\Delta h_{ij} = \sum_k h_{ijkk} \). It follows that
\[
\sum_{(i,j)} h_{ij} \Delta h_{ij} = nS + nHf - n^2H^2 - S^2,
\]
where \(f = \text{Tr} L^3 \) (cf. e.g. [2] or [7]).

M. Okumura [7] established the following lemma (see also [1] or [11]).

Lemma. Let \(\{a_i\}_{i=1}^n \) be a set of real numbers satisfying \(\sum (i) a_i = 0, \sum (i) a_i^2 = t^2 \), where \(t \geq 0 \). Then we have
\[
-\frac{n-2}{\sqrt{n(n-1)}} t^3 \leq \sum (i) a_i^3 \leq \frac{n-2}{\sqrt{n(n-1)}} t^3,
\]
and equalities hold if and only if at least \((n-1) \) of the \(a_i \)'s are equal to one another.

Suppose that \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the principal curvatures of \(M \). Then we have
\[
nH = \sum (i) \lambda_i, \quad S = \sum (i) \lambda_i^2, \quad f = \sum (i) \lambda_i^3.
\]
Set \(S = -nH^2 \), \(\tilde{f} = f - 3HS + 2nH^3 \) and \(\tilde{\lambda}_i = \lambda_i - H \) \((1 \leq i \leq n)\). Then (3) changes into
\[
0 = \sum (i) \tilde{\lambda}_i, \quad \tilde{S} = \sum (i) \tilde{\lambda}_i^2, \quad \tilde{f} = \sum (i) \tilde{\lambda}_i^3.
\]

By applying Okumura’s Lemma to \(\tilde{f} \) in (4), we have
\[
\tilde{f} \geq -\frac{n-2}{\sqrt{n(n-1)}} \tilde{S}\sqrt{\tilde{S}} \iff f \geq 3HS - 2nH^3 - \frac{n-2}{\sqrt{n(n-1)}} \tilde{S}\sqrt{\tilde{S}}.
\]
Substituting this into (1), we have
\[
\sum_{(i,j)} h_{ij} \Delta h_{ij} \geq \tilde{S} \left\{ n - (\tilde{S} - nH^2) - (n-2)H \frac{n}{\sqrt{n-1}} \right\}.
\]

Consider the quadratic form \(Q(u, t) = u^2 - \frac{n-2}{\sqrt{n-1}} ut - t^2 \). By the orthogonal transformation
\[
\begin{align*}
\tilde{u} &= \frac{1}{\sqrt{2n}} \left\{ (1 + \sqrt{n-1})u + (1 - \sqrt{n-1})t \right\}, \\
\tilde{t} &= \frac{1}{\sqrt{2n}} \left\{ (\sqrt{n-1} - 1)u + (\sqrt{n-1} + 1)t \right\}.
\end{align*}
\]
Q(u, t) turns into \(Q(u, t) = \frac{1}{2\sqrt{n-1}}(\tilde{u}^2 - \tilde{t}^2) \), where \(\tilde{u}^2 + \tilde{t}^2 = u^2 + t^2 = S \).

Take \(t = \sqrt{S} \) and \(u = \sqrt{n}H \) in \(Q(u, t) \), and substitute it into (5). We can see

\[
(6) \quad \sum_{(i,j)} h_{ij} \Delta h_{ij} \geq \tilde{S} \left(n - \frac{n}{2\sqrt{n-1}}S + \frac{n}{\sqrt{n-1}}\tilde{u}^2 \right) \geq \tilde{S} \left(n - \frac{n}{2\sqrt{n-1}}S \right).
\]

Therefore we have

\[
(7) \quad \frac{1}{2} \Delta S = \sum_{(i,j,k)} h_{ijk}^2 + \sum_{(i,j)} h_{ij} \Delta h_{ij} \geq \tilde{S} \left(n - \frac{n}{2\sqrt{n-1}}S \right).
\]

Theorem A. Let \(M^n \) be a hypersurface of constant mean curvature immersed in \(S^{n+1} \) with constant length of the second fundamental form. Then:

1. If \(S < 2\sqrt{n-1} \), \(M \) is locally a piece of a small hypersphere \(S^n(r) \) in \(S^{n+1} \), where \(r = \sqrt{n/(n+S)} \).
2. If \(S = 2\sqrt{n-1} \), \(M \) is locally a piece of either \(S^n(r_0) \) or \(S^1(r) \times S^{n-1}(s) \), where \(r_0^2 = n/(n+2\sqrt{n-1}) \), \(r^2 = 1/(\sqrt{n-1}+1) \) and \(s^2 = \sqrt{n-1}/(\sqrt{n-1}+1) \).

Proof. Since \(S \) is constant, the left-hand side of (7) is zero. When \(S \leq 2\sqrt{n-1} \), we have

\[
(8) \quad \tilde{S} \left(n - \frac{n}{2\sqrt{n-1}}S \right) = 0, \quad h_{ijk} = 0, \quad 1 \leq i, j, k \leq n.
\]

If \(S < 2\sqrt{n-1} \), we have \(\tilde{S} = 0 \), which means that \(M \) is totally umbilical and hence is locally a piece of hypersphere \(S^n(r) \) where \(r = \sqrt{n/(n+S)} \).

Suppose \(S = 2\sqrt{n-1} \). Then all of the inequalities in (5)–(7) become equal ones. Okumura’s Lemma implies that at least \(n-1 \) of \(\lambda_i \)’s are equal to one another. When \(\lambda_1 = \lambda_2 = \cdots = \lambda_n \), \(M \) is totally umbilical and hence is locally a piece of hypersphere \(S^n(r) \) where \(r^2 = n/(n+2\sqrt{n-1}) \). When \(M \) is not totally umbilical, there are exactly \(n-1 \) of \(\lambda_i \)’s that are equal to one another. The same arguments as those developed by Chern-do Carmo-Kobayashi (see [3], p. 68) show that \(M \) is locally a piece of \(S^1(r) \times S^{n-1}(s) \) in \(S^{n+1} \). To determine the radii \(r \) and \(s \), we refer to the examples of K. Nomizu and B. Smyth [5], from which we have

\[H = -\frac{1}{n} \left(\frac{s}{r} \right)^2 + \frac{n-1}{n} \left(\frac{r}{s} \right)^2, \quad S = \left(\frac{s}{r} \right)^2 + (n-1) \left(\frac{r}{s} \right)^2. \]

It is easy to see that

\[
\left(\frac{s}{r} \right)^2 + (n-1) \left(\frac{r}{s} \right)^2 \geq 2\sqrt{n-1}
\]

and equality holds if and only if \(\left(\frac{s}{r} \right)^2 = \sqrt{n-1} \). Therefore we have \(r^2 = \frac{1}{\sqrt{n-1}+1} \) and \(s^2 = \frac{\sqrt{n-1}}{\sqrt{n-1}+1} \).

When \(M \) is closed, the integral of the left-hand side of (7) on \(M \) is equal to zero, and so is that of the right-hand side. After the same deduction as in the proof of Theorem A, we can obtain the following:

Theorem A’. Suppose \(M \) is a closed hypersurface of constant mean curvature immersed in \(S^{n+1} \). Then:

1. If \(S < 2\sqrt{n-1} \), \(M \) is a small hypersphere \(S^n(r) \), where \(r = \sqrt{n/(n+S)} \).
2. If \(S = 2\sqrt{n-1} \), \(M \) is either a small hypersphere \(S^n(r_0) \) or \(S^1(r) \times S^{n-1}(s) \), where \(r_0, r \) and \(s \) are taken as in Theorem A.
We can show an application of Theorem A'. H. W. Xu [10] proved the following:

Proposition (Xu). Let \(M^n \) be an \(n \)-dimensional compact submanifold with parallel mean curvature vector field in \(S^{n+p} \) and \(p > 1 \). If

\[
S \leq \min \left\{ \frac{2n}{1 + \sqrt{n}}, \frac{n}{2 - (p - 1)^{-1}} \right\},
\]

and the Gauss mapping of \(M \) is relatively affine, then \(M^n \) is a standard hypersphere in a totally geodesic \(S^{n+1} \) of \(S^{n+p} \).

By Theorem A', we can remove the assumption that the Gauss mapping is relatively affine. Namely we can obtain the following

Corollary. Let \(M^n \) be an \(n \)-dimensional compact submanifold with parallel mean curvature vector field in \(S^{n+p} \) and \(p > 1 \). If

\[
S \leq \min \left\{ \frac{2n}{1 + \sqrt{n}}, \frac{n}{2 - (p - 1)^{-1}} \right\},
\]

then \(M^n \) is a standard hypersphere in a totally geodesic \(S^{n+1} \) of \(S^{n+p} \).

Proof. It is easy to check that \((\sqrt{n} + 1)/n > 1/\sqrt{n - 1}\). Therefore we have

\[
\sqrt{n - 1} > \frac{n}{\sqrt{n} + 1} \iff 2\sqrt{n - 1} > \frac{2n}{\sqrt{n} + 1} \geq S.
\]

\[\square\]

REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, JAPAN

E-mail address: hou@math.titech.ac.jp

DEPARTMENT OF APPLIED MATHEMATICS, DALIAN UNIVERSITY OF TECHNOLOGY, PEOPLE’S REPUBLIC OF CHINA