On the non-existence of homoclinic orbits for a class of infinite dimensional Hamiltonian systems
HTML articles powered by AMS MathViewer
- by Ph. Clément and R. C. A. M. van der Vorst
- Proc. Amer. Math. Soc. 125 (1997), 1167-1176
- DOI: https://doi.org/10.1090/S0002-9939-97-03696-4
- PDF | Request permission
Abstract:
We prove that for a class of infinite dimensional Hamiltonian systems certain homoclinic connections to the origin cease to exist when the non-linearities have ‘super-critical’ growth. The proof is based on a variational principle and a Pohožaev type identity.References
- A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294. MR 929280, DOI 10.1002/cpa.3160410302
- Philippe Clément, Patricio Felmer, and Enzo Mitidieri, Solutions homoclines d’un système hamiltonien non-borné et superquadratique, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1481–1484 (French, with English and French summaries). MR 1340057
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- Hulshof, J and van der Vorst, R.C.A.M., On the equation $\Delta u + u^p=0$, Course Notes Leiden/Delft 1991, ‘Topics in Nonlinear Analysis’.
- Enzo Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), no. 1-2, 125–151. MR 1211727, DOI 10.1080/03605309308820923
- Noether, E., Invariante Variations probleme, Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl. (1918), 235-257.
- Peter J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR 836734, DOI 10.1007/978-1-4684-0274-2
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- Patrizia Pucci and James Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681–703. MR 855181, DOI 10.1512/iumj.1986.35.35036
- J.-L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear system, J. Assoc. Comput. Mach. 14 (1967), 543–548. MR 234619, DOI 10.1145/321406.321416
- Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779, DOI 10.1007/978-1-4612-0873-0
- R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1992), no. 4, 375–398. MR 1132768, DOI 10.1007/BF00375674
Bibliographic Information
- Ph. Clément
- Affiliation: Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands
- R. C. A. M. van der Vorst
- Affiliation: Center for Dynamical Systems, Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
- Received by editor(s): October 25, 1995
- Additional Notes: This work was supported by the Netherlands Organization for Scientific Research, NWO and EC-HCM project Reaction–Diffusion Equations ERBCHRXCT930409.
- Communicated by: Hal L. Smith
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1167-1176
- MSC (1991): Primary 35J50, 35J55, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-97-03696-4
- MathSciNet review: 1363415