On the von Neumann-Jordan constant for Banach spaces
HTML articles powered by AMS MathViewer
- by Mikio Kato and Yasuji Takahashi
- Proc. Amer. Math. Soc. 125 (1997), 1055-1062
- DOI: https://doi.org/10.1090/S0002-9939-97-03740-4
- PDF | Request permission
Abstract:
Let $C_{\mathrm {NJ}}(E)$ be the von Neumann-Jordan constant for a Banach space $E$. It is known that $1\le C_{\mathrm {NJ}}(E)\le 2$ for any Banach space $E$; and $E$ is a Hilbert space if and only if $C_{\mathrm {NJ}}(E)=1$. We show that: (i) If $E$ is uniformly convex, $C_{\mathrm {NJ}}(E)$ is less than two; and conversely the condition $C_{\mathrm {NJ}}(E)<2$ implies that $E$ admits an equivalent uniformly convex norm. Hence, denoting by $\tilde {C}_{\mathrm {NJ}}(E)$ the infimum of all von Neumann-Jordan constants for equivalent norms of $E$, $E$ is super-reflexive if and only if $\tilde {C}_{\mathrm {NJ}}(E)<2$. (ii) If $\tilde {C}_{\mathrm {NJ}}(E)=2^{2/p-1}$, $1<p\le 2$ (the same value as that of $L_p$-space), $E$ is of Rademacher type $r$ and cotype $r’$ for any $r$ with $1\le r<p$, where $1/r+1/r’=1$; the converse holds if $E$ is a Banach lattice and $l_p$ is finitely representable in $E$ or $E’$.References
- Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253
- J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
- J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114–115.
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 173932, DOI 10.2307/1970663
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI 10.4153/CJM-1972-089-7
- P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719–723.
- Mikio Kato and Ken-ichi Miyazaki, Remark on generalized Clarkson’s inequalities for extreme cases, Bull. Kyushu Inst. Tech. Math. Natur. Sci. 41 (1994), 27–31. MR 1292336
- M.Kato and K. Miyazaki, On generalized Clarkson’s inequalities for $L_p(L_q)$ and Sobolev spaces, Math. Japon. 43 (1996), 505–515.
- Gottfried Köthe, Topologisch lineare Räume. I, Die Grundlehren der mathematischen Wissenschaften, Band 107, Springer-Verlag, Berlin-New York, 1966 (German). Zweite verbesserte Auflage. MR 0194863, DOI 10.1007/978-3-662-24912-3
- James Kuelbs (ed.), Probability on Banach spaces, Advances in Probability and Related Topics, vol. 4, Marcel Dekker, Inc., New York, 1978. MR 515428
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 829919, DOI 10.1090/cbms/060
- Gilles Pisier and Quan Hua Xu, Random series in the real interpolation spaces between the spaces $v_p$, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 185–209. MR 907695, DOI 10.1007/BFb0078146
Bibliographic Information
- Mikio Kato
- Affiliation: Department of Mathematics, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
- Yasuji Takahashi
- Affiliation: Department of System Engineering, Okayama Prefectural University, Soja 719-11, Japan
- Received by editor(s): September 8, 1995
- Additional Notes: The authors were supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (07640225 (first author), 07640240 (second author))
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1055-1062
- MSC (1991): Primary 46B20, 46B03, 46B42
- DOI: https://doi.org/10.1090/S0002-9939-97-03740-4
- MathSciNet review: 1371131