Rings with finite essential socle
HTML articles powered by AMS MathViewer
- by José L. Gómez Pardo and Pedro A. Guil Asensio
- Proc. Amer. Math. Soc. 125 (1997), 971-977
- DOI: https://doi.org/10.1090/S0002-9939-97-03747-7
- PDF | Request permission
Abstract:
Let $R$ be a ring such that every direct summand of the injective envelope $E=E(R_R)$ has an essential finitely generated projective submodule. We show that, if the cardinal of the set of isomorphism classes of simple right $R$-modules is no larger than that of the isomorphism classes of minimal right ideals, then $R_R$ cogenerates the simple right $R$-modules and has finite essential socle. This extends Osofsky’s theorem which asserts that a right injective cogenerator ring has finite essential right socle. It follows from our result that if $R_R$ is a CS cogenerator, then $R_R$ is already an injective cogenerator and, more generally, that if $R_R$ is CS and cogenerates the simple right $R$-modules, then it has finite essential socle. We show with an example that in the latter case $R_R$ need not be an injective cogenerator.References
- Jan-Erik Björk, Radical properties of perfect modules, J. Reine Angew. Math. 253 (1972), 78–86. MR 313309, DOI 10.1515/crll.1972.253.78
- A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 109, 61–80. MR 437595, DOI 10.1093/qmath/28.1.61
- Nguyen Viet Dung, Dinh Van Huynh, Patrick F. Smith, and Robert Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series, vol. 313, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994. With the collaboration of John Clark and N. Vanaja. MR 1312366
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349, DOI 10.1007/978-3-642-65321-6
- Patrick J. Fleury (ed.), Advances in noncommutative ring theory, Lecture Notes in Mathematics, vol. 951, Springer-Verlag, Berlin-New York, 1982. MR 672800
- J. L. Gómez Pardo and P. A. Guil Asensio, Essential embedding of cyclic modules in projectives, Trans. Amer. Math. Soc., to appear.
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- Pere Menal, On the endomorphism ring of a free module, Publ. Sec. Mat. Univ. Autònoma Barcelona 27 (1983), no. 1, 141–154. MR 763863
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- J. Rada and M. Saorín, On semiregular rings whose finitely generated modules embed in free modules, Canad. Math. Bull., to appear.
- S. Tariq Rizvi, Commutative rings for which every continuous module is quasi-injective, Arch. Math. (Basel) 50 (1988), no. 5, 435–442. MR 942540, DOI 10.1007/BF01196504
- B. Stenström, Rings of Quotients, Springer-Verlag, Berlin and New York, 1975.
- R. B. Warfield Jr., Serial rings and finitely presented modules, J. Algebra 37 (1975), no. 2, 187–222. MR 401836, DOI 10.1016/0021-8693(75)90074-5
Bibliographic Information
- José L. Gómez Pardo
- Affiliation: Departamento de Alxebra, Universidade de Santiago, 15771 Santiago de Compostela, Spain
- Email: pardo@zmat.usc.es
- Pedro A. Guil Asensio
- Affiliation: Departamento de Matematicas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
- Email: paguil@fcu.um.es
- Received by editor(s): September 28, 1995
- Additional Notes: This work was partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091) and the Xunta de Galicia (XUGA 10502B94), and the second author by the C. A. de Murcia (PIB 94-25).
- Communicated by: Ken Goodearl
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 971-977
- MSC (1991): Primary 16L30; Secondary 16D50, 16E50, 16L60, 16S50
- DOI: https://doi.org/10.1090/S0002-9939-97-03747-7
- MathSciNet review: 1371138