A NOTE ON THE ZERO-SEQUENCES
OF SOLUTIONS OF $f'' + Af = 0$

ANDREAS SAUER

(Communicated by Hal L. Smith)

Abstract. We give a sufficient condition for complex sequences to be zero-
sequences of solutions of $f'' + Af = 0$ where A is transcendental entire and of
finite order.

1. Introduction

We consider the zero distribution of solutions of the complex differential equation

$$f'' + Af = 0 \tag{1}$$

where A is a transcendental entire function of finite order. It is well known that
all nontrivial solutions f of (1) are of infinite order and the only possible deficient
value of f is 0 (see [BL], [L]). For a complete introduction to the oscillation theory
of complex differential equations we refer to [L]. It is natural to ask which zero-
sequences with finite exponent of convergence can occur for a solution f. In [B] Bank
gave the following necessary condition:

Theorem. Let z_n be an infinite sequence of distinct nonzero complex numbers with
$z_n \to \infty$ and having a finite exponent of convergence. Let p denote the genus of z_n
and set

$$\lambda_k := \sum_{m \neq k} \left(\frac{z_k}{z_m} \right)^p (z_m - z_k)^{-1}. \tag{2}$$

Then, if z_n is the zero-sequence of a solution of an equation (1) where A is an entire
function of finite order, then there must exist a real number $b > 0$ and a positive
integer k_0 such that

$$|\lambda_k| \leq \exp \left(|z_k|^b \right)$$

for all $k \geq k_0$.

This shows that not every sequence $z_n \to \infty$ with finite exponent of convergence
is the zero-sequence of a solution of an equation (1). In fact Bank constructed a
sequence with convergence exponent zero which does not fulfill the requirements of
the foregoing theorem. Conversely, it was shown in [B] that every sequence z_n with
the rather restrictive property $|z_{n+1}| \geq K|z_n|$ for some $K > 1$ is the zero-sequence

Received by the editors October 11, 1995.
1991 Mathematics Subject Classification. Primary 34A20; Secondary 30D20.
This research was done during a visit at the University of Joensuu, Finland, financed by the
DFG (Deutsche Forschungsgemeinschaft).
of a solution of (1). It is easy to see that in this case the exponent of convergence of \(z_n \) is zero. The purpose of this note is to give a more general sufficient condition for \(z_n \) to be a zero-sequence. This will be done in Theorem 1. Further we show in Theorem 2 that a zero-sequence which does not fulfill our sufficient condition must have a special property. We note that if the requirement that \(A \) is of finite order is dropped, then any two distinct sequences tending to infinity are the zero-sequences of linearly independent solutions of an equation (1). This was proved in [S]. Finally let us fix some notations. In the sequel \(z_n \) will always denote a sequence of distinct nonzero complex numbers with \(|z_{n+1}| \geq |z_n| \) for all \(n \in \mathbb{N} \) and \(z_n \to \infty \). Further we will assume that the exponent of convergence \(\gamma \) of \(z_n \) is finite, i.e. that

\[
\gamma := \inf \left\{ c > 0 \mid \sum_{n=1}^{\infty} |z_n|^{-c} \text{ converges} \right\} < \infty.
\]

The smallest nonnegative integer \(p \) such that \(\sum |z_n|^{-(p+1)} \) converges is the genus of \(z_n \). Further \(G \) will always denote the canonical product formed by \(z_n \). The Weierstraß convergence factors are defined by \(e_p(z) := \exp(\sum_{j=1}^{p} z/j) \) where we set \(e_0 \equiv 1 \).

2. Results

Theorem 1. Let \(z_n \) be a sequence with finite exponent of convergence. Let \(p \) be its genus and set

\[
\mu_k := \prod_{m \neq k} \left(1 - \frac{z_k}{z_m} \right)^{-1} e_p(z_k/z_m)^{-1}.
\]

If there exists a real number \(b > 0 \) and a positive integer \(k_0 \) such that

\[
|\mu_k| \leq \exp\left(|z_k|^b \right)
\]

for all \(k \geq k_0 \), then \(z_n \) is the zero-sequence of a solution of an equation (1) with transcendental \(A \) of finite order.

Proof. Let \(G \) be the canonical product formed by \(z_n \). If a function \(Ge^g \) satisfies an equation (1), it is easy to see that \(G \) satisfies the differential equation

\[
G'' + 2g'G' + ((g')^2 + g'' + A)G = 0.
\]

Evaluation at \(z_k \) gives

\[
g'(z_k) = -\frac{G''(z_k)}{2G'(z_k)}.
\]

This was already pointed out in [B] and yields the necessary condition (2). Conversely, if a function \(g \) of finite order satisfies (5), then \(Ge^g \) satisfies (1) with

\[
A := -(g')^2 - g'' - (G'' + 2g'G')/G.
\]

Clearly \(A \) will then be of finite order. Once we have constructed \(g \) satisfying (5) we only need to show that \(g \) is of finite order and can be chosen such that \(A \) is transcendental. To solve the interpolation problem (5) we use a method known as Mittag-Lefflerscher Anschmiegungssatz in German literature (see [BS], p. 257, Satz 29). For convenience we set \(\sigma_k := -G''(z_k)/2G'(z_k) \) and form the functions \(\sigma_k/G(z) = c_k/(z-z_k) + P_k(z) \) with \(P_k \) holomorphic at \(z_k \). Now construct a Mittag-Leffler series \(H \) which is holomorphic in \(\mathbb{C} \) except for poles of first order at all \(z_k \) with singular part \(c_k/(z-z_k) \). Then \(HG \) has the interpolation property: Clearly \(HG \)
is entire and Laurent expansion of H around z_k gives $H(z) = c_k/(z - z_k) + Q_k(z)$ with Q_k holomorphic at z_k. Thus

$$HG(z_k) = \lim_{z \to z_k} H(z)G(z) = \lim_{z \to z_k} \left(\frac{\sigma_k}{G(z)} - P_k(z) + Q_k(z) \right)G(z) = \sigma_k.$$

Since G is of finite order, we only need to show that it is possible to construct H such that it is of finite order. The standard construction leads to

$$H(z) = \sum_{k=1}^{\infty} \left(\frac{z}{z_k} \right)^{n_k} \frac{c_k}{z - z_k}$$

where the n_k are nonnegative integers chosen such that the series converges compactly (see [HC], pp. 113-115). In order to choose n_k suitably we need an estimation of $|c_k|$. We thus have to determine the residue of σ_k/G at z_k. A routine computation shows $c_k = -z_k\sigma_k\mu_k/e_p(1)$. On the other hand one obtains $\mu_k^{-1} = -z_kG'(z_k)/e_p(1)$ and thus

$$2c_k = -z_k^2G''(z_k)\mu_k^2.$$

Since G'' is of finite order and using the assumption of the theorem we thus find an estimation $|c_k| \leq C\exp\left(|z_k|^c\right)$ with suitable $c > 0$ and $C > 0$. We set $n_k := 2\|z_k|^c\|$ where $[x]$ is the smallest integer that satisfies $[x] \geq x$. To prove the convergence of H it suffices to show that $\sum_{k=1}^{\infty} (z/z_k)^{n_k}c_k/z_k$ converges absolutely in \mathbb{C} (see [HC]). From the estimation for $|c_k|$ we get for $|z| \geq e^{-1}$

$$\sum_{|z_k| > e|z|} \left| \frac{z}{z_k} \right|^{n_k} \frac{|c_k|}{|z_k|} \leq C \sum_{|z_k| > e|z|} \exp(-|z_k|^c).$$

Since the exponent of convergence of z_n is finite, there exists $n \in \mathbb{N}$ such that $\sum |z_k|^{-cn}$ converges. For sufficiently large k clearly $\exp(-|z_k|^c) < |z_k|^{-cn}$ and thus the series on the right in (9) converges. We will now show that H is of finite order. For this purpose we use a theorem of R. Nevanlinna ([N], p. 36) which states that for meromorphic f the order is the maximum of the exponent of convergence of its poles and the growth order of

$$I(r) := \frac{1}{\pi} \int_0^r \log^+ M(t,f) \, dt$$

where $M(t,f) = \sup_{|z| = t} |f(z)|$. Since the poles of H are the zeros of G, we only need to consider the growth of I. We set $K := C \sum_{k=1}^{\infty} \exp(-|z_k|^c)$. It follows for $|z| \geq 1/(e - 1)$

$$|H(z)| \leq \sum_{|z_k| \leq |z|} \left| \frac{z}{z_k} \right|^{n_k} \frac{|c_k|}{|z - z_k|} + K.$$
Thus
\[
\log^+ |H(z)| \leq \sum_{|z_k| \leq |z|} \left(n_k \log^+ \left| \frac{z}{z_k} \right| + \log^+ |c_k| + \log^+ (|z - z_k|^{-1}) \right) + O(\log(|z|))
\]
\[
\leq [(e|z|)]^c n(e|z|, G) \left(2 \log^+ \left| \frac{z}{z_1} \right| + 1 \right) + n(e|z|, G) \log^+(C)
\]
\[
+ \sum_{|z_k| \leq |z|} \log^+ (|z - z_k|^{-1}) + O(\log(|z|)).
\]

Here \(n \) is the counting function for the zeros of \(G \). Hence
\[
I(r) \leq [(er)^c] n(er, G) \left(2 \log^+ \frac{r}{|z_1|} + 1 \right) + n(er, G) \log^+(C)
\]
\[
+ \sum_{|z_k| \leq er} \frac{1}{r} \int_{1/(e-1)}^r \log^+ (|t - |z_k||^{-1}) \, dt + O(\log(r))
\]
\[
\leq [(er)^c] n(er, G) \left(2 \log^+ \frac{r}{|z_1|} + 1 \right) + n(er, G) \left(\log^+(C) + \frac{2}{r} \right) + O(\log(r)).
\]

Since \(G \) is of finite order, it follows that \(H \) is of finite order. To complete the proof we show that it is possible to choose \(H \) such that \(A \) is transcendental. Let \(g \) be any primitive of \(HG \). Suppose \(A \) defined by (6) is a polynomial. An application of the Clunie lemma to (6) shows that \(g \) is a polynomial \(p_1 \). This means \(H = p_1/G \).

We define \(\tilde{H} \) by (7) with \(n_k := 2[|z_k|^c] + 1 \). The same method as above shows that \(\tilde{H} \) is also of finite order. Now \(\tilde{H} \) cannot be of the form \(p_2/G \) with a polynomial \(p_2 \) since
\[
\tilde{H}(z) - H(z) = \sum_{k=1}^{\infty} \left(\frac{z}{z_k} - 1 \right) \left(\frac{z}{z_k} \right)^{n_k} \frac{c_k}{z - z_k}
\]
\[
= \sum_{k=1}^{\infty} c_k^{n_k+1} z^{n_k}.
\]

This is an entire function and thus either not of the form \((p_1 - p_2)/G\) or identically zero. In the latter case clearly \(c_k = 0 \) for all \(k \in \mathbb{N} \) and thus by the definition of \(c_k \) it follows \(\sigma_k = 0 \) for all \(k \in \mathbb{N} \). In this case simply set \(H \equiv 1 \), i.e. we choose \(g \) as a primitive of \(G \).

It seems to us that condition (3) is not necessary. Nonetheless we can show that a zero-sequence which does not fulfill (3) must have a rather special property.

Theorem 2. Let \(z_n \) be a zero-sequence of a solution of (1) such that the requirements of Theorem 1 are not fulfilled. Further let \(G \) be the canonical product formed by \(z_n \). Then there exists a subsequence \(z_{n_k} \to \infty \) such that for all \(j \in \mathbb{N}, b > 0 \) there exists \(k(j, b) \in \mathbb{N} \) with
\[
|G^{(j)}(z_{n_k})| \leq \exp \left(-|z_{n_k}|^b \right)
\]
for all \(k \geq k(j, b) \).
Proof. We assume without loss of generality \(b \in \mathbb{N} \). Since for all \(b > 0 \) and \(k_0 \in \mathbb{N} \) there exists \(k \geq k_0 \) such that \(|\mu_k| = e_p(1)/|z_k G'(z_k)| > \exp(|z_k|^b)\), we find for every \(b \in \mathbb{N} \) a subsequence \(z_{b,n} \) of \(z_n \) with \(|G'(z_{b,n})| \leq \exp(-|z_{b,n}|^b)\). We define \(z_{n_k} \) inductively by the usual diagonal method: Set \(z_{n_1} := z_{1,n} \) where \(l \) is chosen such that \(|z_{1,n}| \geq 1\). Now define \(z_{n_k} \) such that it is in the sequence \(z_{k,n} \) and \(|z_{n_k}| > |z_{n_{k-1}}|\). It follows \(|G'(z_{n_k})| \leq \exp(-|z_{n_k}|^k)\). By choosing \(k(1,b) := [b] \) the assertion follows for \(j = 1 \). An application of the Clunie lemma to (6) and standard order considerations show \(\rho(g) = \rho(A) \). Thus all coefficients in (4) are of finite order. Now from (4) we have
\[
|G''(z_{n_k})| = |2g'(z_{n_k})G'(z_{n_k})| \leq |2g'(z_{n_k})|\exp(-|z_{n_k}|^k)
\]
and thus for \(k \) large enough \(|G''(z_{n_k})| \leq \exp(|z_{n_k}|^{\gamma,b} + \varepsilon - |z_{n_k}|^k)\). By enlarging \(k \) if needed we get \(|G''(z_{n_k})| \leq \exp(-|z_{n_k}|^{k/2})\) and the assertion follows for \(j = 2 \). Differentiating (4) and an easy induction argument yield the statement.

Remarks. a) Let \(\gamma \) be the exponent of convergence of \(z_n \) and \(b \) as in (3). Then (8) shows that the constant \(c \) can be chosen as any number bigger than \(\max\{\gamma,b\} \). Thus it follows from (10) that \(H \) can be chosen such that \(\rho(H) \leq \max\{2\gamma,b+\gamma\} + \varepsilon \) for fixed \(\varepsilon > 0 \). Since \(\rho(G) = \gamma \), we get from (6) that \(\rho(A) \leq \max\{2\gamma,b+\gamma\} + \varepsilon \).

b) The mentioned sufficient condition \(|z_{n+1}| \geq K|z_n|\) in [B] is covered by (3) in the following sense: In this case the sequence \(\mu_k \) is bounded as can be seen from equation (42) in [B] and thus (3) holds with any \(b > 0 \). Since the convergence exponent of \(z_n \) is zero, we get from our order estimation in a) that \(A \) can be chosen to be of arbitrarily small order. In [B] it was shown that \(A \) can be constructed with \(\rho(A) = 0 \).

c) Of course (3) implies the necessary condition (2). We want to remark that this can be verified from \(\lambda_k = (z_k G''(z_k)\mu_k)/(2e_p(1)) + p/z_k \). This follows from \(\lambda_k = \sigma_k + p/z_k \) (see [B], equation (12)) and \(\mu_k = -e_p(1)/(z_k G'(z_k)) \).

References

Gerhard Mercator Universität, Fachbereich 11 Mathematik, Lothringerstrasse 65, D-47057 Duisburg, Federal Republic of Germany

E-mail address: sauer@math.uni-duisburg.de