A note on paracompactness in generalized ordered spaces
HTML articles powered by AMS MathViewer
- by Eric K. van Douwen and David J. Lutzer
- Proc. Amer. Math. Soc. 125 (1997), 1237-1245
- DOI: https://doi.org/10.1090/S0002-9939-97-03902-6
- PDF | Request permission
Abstract:
In this paper, we show that for generalized ordered spaces, paracompactness is equivalent to Property D, where a space $X$ is said to have Property D if, given any collection $\{G(x)\colon x\in X\}$ of open sets in $X$ satisfying $x\in G(x)$ for each $x$, there is a closed discrete subset $D$ of $X$ satisfying $X=\bigcup \{G(x)\colon x\in D\}$.References
- Carlos R. Borges and Albert C. Wehrly, A study of $D$-spaces, Topology Proc. 16 (1991), 7–15. MR 1206448
- Eric K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371–377. MR 547605, DOI 10.2140/pjm.1979.81.371
- M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53, Mathematisch Centrum, Amsterdam, 1974. MR 0418053
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. (Rozprawy Mat.) 89 (1971), 32. MR 324668
- D. J. Lutzer, Ordinals and paracompactness in ordered spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974, pp. 258–266. MR 0362250
- David J. Lutzer, Ordered topological spaces, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 247–295. MR 564104
Bibliographic Information
- Eric K. van Douwen
- Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
- David J. Lutzer
- Affiliation: Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187
- Email: DJLUTZ@MAIL.WM.EDU
- Received by editor(s): October 5, 1995
- Communicated by: Franklin D. Tall
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1237-1245
- MSC (1991): Primary 54F05, 54D20
- DOI: https://doi.org/10.1090/S0002-9939-97-03902-6
- MathSciNet review: 1396999