Weakly coupled bound states in quantum waveguides
HTML articles powered by AMS MathViewer
- by W. Bulla, F. Gesztesy, W. Renger and B. Simon
- Proc. Amer. Math. Soc. 125 (1997), 1487-1495
- DOI: https://doi.org/10.1090/S0002-9939-97-03726-X
Abstract:
We study the eigenvalue spectrum of Dirichlet Laplacians which model quantum waveguides associated with tubular regions outside of a bounded domain. Intuitively, our principal new result in two dimensions asserts that any domain $\Omega$ obtained by adding an arbitrarily small “bump” to the tube $\Omega _{0}=\mathbb {R}\times (0,1)$ (i.e., $\Omega \supsetneqq \Omega _{0}$, $\Omega \subset \mathbb {R}^{2}$ open and connected, $\Omega =\Omega _{0}$ outside a bounded region) produces at least one positive eigenvalue below the essential spectrum $[\pi ^{2},\infty )$ of the Dirichlet Laplacian $-\Delta ^{D}_{\Omega }$. For $|\Omega \backslash \Omega _{0}|$ sufficiently small ($| . |$ abbreviating Lebesgue measure), we prove uniqueness of the ground state $E_{\Omega }$ of $-\Delta ^{D}_{\Omega }$ and derive the “weak coupling” result $E_{\Omega }=\pi ^{2}-\pi ^{4}|\Omega \backslash \Omega _{0}|^{2} +O(|\Omega \backslash \Omega _{0}|^{3})$ using a Birman-Schwinger-type analysis. As a corollary of these results we obtain the following surprising fact: Starting from the tube $\Omega _{0}$ with Dirichlet boundary conditions at $\partial \Omega _{0}$, replace the Dirichlet condition by a Neumann boundary condition on an arbitrarily small segment $(a,b)\times \{1\}$, $a<b$, of $\partial \Omega _{0}$. If $H(a,b)$ denotes the resulting Laplace operator in $L^{2}(\Omega _{0})$, then $H(a,b)$ has a discrete eigenvalue in $[\pi ^{2} /4,\pi ^{2})$ no matter how small $|b-a|>0$ is.References
- Mark S. Ashbaugh and Pavel Exner, Lower bounds to bound state energies in bent tubes, Phys. Lett. A 150 (1990), no. 3-4, 183–186. MR 1078396, DOI 10.1016/0375-9601(90)90118-8
- R. Blankenbecler, M. L. Goldberger, and B. Simon, The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians, Ann. Physics 108 (1977), no. 1, 69–78. MR 456018, DOI 10.1016/0003-4916(77)90351-7
- P. Duclos and P. Exner, Curvature vs. thickness in quantum waveguides, Czech. J. Phys. 41 (1991), 1009–1018; erratum, vol. 42, 1992, p. 344.
- P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), no. 1, 73–102. MR 1310767, DOI 10.1142/S0129055X95000062
- D. V. Evans, M. Levitin, and D. Vassiliev, Existence theorems for trapped modes, J. Fluid Mech. 261 (1994), 21–31. MR 1265871, DOI 10.1017/S0022112094000236
- Pavel Exner, Bound states in quantum waveguides of a slowly decaying curvature, J. Math. Phys. 34 (1993), no. 1, 23–28. MR 1198617, DOI 10.1063/1.530378
- P. Exner and P. Šeba, Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), no. 11, 2574–2580. MR 1019002, DOI 10.1063/1.528538
- P. Exner, P.Šeba, and P. Šťovíček, On existence of a bound state in an L–shaped waveguide, Czech. J. Phys. B 39 (1989), 1181–1191.
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- M. Klaus, On the bound state of Schrödinger operators in one dimension, Ann. Physics 108 (1977), no. 2, 288–300. MR 503200, DOI 10.1016/0003-4916(77)90015-X
- M. Klaus and Barry Simon, Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case, Ann. Physics 130 (1980), no. 2, 251–281. MR 610664, DOI 10.1016/0003-4916(80)90338-3
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- W. Renger and W. Bulla, Existence of bound states in quantum waveguides under weak conditions, Lett. Math. Phys. 35 (1995), no. 1, 1–12. MR 1346041, DOI 10.1007/BF00739151
- Barry Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics 97 (1976), no. 2, 279–288. MR 404846, DOI 10.1016/0003-4916(76)90038-5
Bibliographic Information
- W. Bulla
- Affiliation: Institute for Theoretical Physics, Technical University of Graz, A-8010 Graz, Austria
- Email: bulla@itp.tu-graz.ac.at
- F. Gesztesy
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- MR Author ID: 72880
- Email: fritz@math.missouri.edu
- W. Renger
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: walter@mumathnx3.cs.missouri.edu
- B. Simon
- Affiliation: Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 189013
- Received by editor(s): November 13, 1995
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The Government has certain rights in this material.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 by the authors
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1487-1495
- MSC (1991): Primary 81Q10, 35P15; Secondary 47A10, 35J10
- DOI: https://doi.org/10.1090/S0002-9939-97-03726-X
- MathSciNet review: 1371117