Finite dimensional representations of $U_q(sl(2,1))$
HTML articles powered by AMS MathViewer
- by Yi Ming Zou
- Proc. Amer. Math. Soc. 125 (1997), 1607-1616
- DOI: https://doi.org/10.1090/S0002-9939-97-03757-X
- PDF | Request permission
Abstract:
Structures of the finite dimensional simple weight $U_{q}(sl(2,1))$-modules are studied in detail for both the generic and the roots of 1 cases.References
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- Roberto Floreanini, Dimitry A. Leites, and Luc Vinet, On the defining relations of quantum superalgebras, Lett. Math. Phys. 23 (1991), no. 2, 127–131. MR 1148504, DOI 10.1007/BF00703725
- Roberto Floreanini, Vyacheslav P. Spiridonov, and Luc Vinet, $q$-oscillator realizations of the quantum superalgebras $\textrm {sl}_q(m,n)$ and $\textrm {osp}_q(m,2n)$, Comm. Math. Phys. 137 (1991), no. 1, 149–160. MR 1099259
- M. D. Gould and M. Scheunert, Classification of finite-dimensional unitary irreps for $U_q[\textrm {gl}(m|n)]$, J. Math. Phys. 36 (1995), no. 1, 435–452. MR 1308656, DOI 10.1063/1.531317
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- J. R. Links and M. D. Gould, Two variable link polynomials from quantum supergroups, Lett. Math. Phys. 26 (1992), no. 3, 187–198. MR 1199742, DOI 10.1007/BF00420752
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- M. Scheunert, Serre-type relations for special linear Lie superalgebras, Lett. Math. Phys. 24 (1992), no. 3, 173–181. MR 1166746, DOI 10.1007/BF00402892
- M. Scheunert, The presentation and $q$ deformation of special linear Lie superalgebras, J. Math. Phys. 34 (1993), no. 8, 3780–3808. MR 1230552, DOI 10.1063/1.530059
- R. B. Zhang, Braid group representations arising from quantum supergroups with arbitrary $q$ and link polynomials, J. Math. Phys. 33 (1992), no. 11, 3918–3930. MR 1185872, DOI 10.1063/1.529840
- R. B. Zhang, Finite-dimensional representations of $U_q(\textrm {osp}(1/2n))$ and its connection with quantum $\textrm {so}(2n+1)$, Lett. Math. Phys. 25 (1992), no. 4, 317–325. MR 1188811, DOI 10.1007/BF00398404
- Yi Ming Zou, Deformations of enveloping algebra of Lie superalgebra $\textrm {sl}(m,n)$, Comm. Math. Phys. 162 (1994), no. 3, 467–479. MR 1277472, DOI 10.1007/BF02101743
Bibliographic Information
- Received by editor(s): August 31, 1995
- Received by editor(s) in revised form: December 11, 1995
- Communicated by: Roe Goodman
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1607-1616
- MSC (1991): Primary 17B37; Secondary 81R50, 17B70
- DOI: https://doi.org/10.1090/S0002-9939-97-03757-X
- MathSciNet review: 1371148