WEIGHTED HARDY-LITTLEWOOD INEQUALITY
FOR A-HARMONIC TENSORS

SHUSEN DING

(Communicated by Theodore W. Gamelin)

Abstract. In this paper we prove a local weighted integral inequality for conjugate A-harmonic tensors similar to the Hardy and Littlewood integral inequality for conjugate harmonic functions. Then by using the local weighted integral inequality, we prove a global weighted integral inequality for conjugate A-harmonic tensors in John domains.

1. Introduction and notation

Conjugate harmonic functions have wide applications in many fields, such as potential theory, harmonic analysis and the theory of H^p-spaces. Conjugate A-harmonic tensors are interesting and important generalizations of conjugate harmonic functions and p-harmonic functions, $p > 1$. Many interesting results of conjugate A-harmonic tensors and their applications in fields such as quasiregular mappings and the theory of elasticity have been found recently, see [N3], [I], [IM], [S], [B] and [BM]. In this paper, we prove local weighted inequalities and global weighted integral inequalities for conjugate A-harmonic tensors in John domains.

Let e_1, e_2, \cdots, e_n denote the standard unit basis of \mathbb{R}^n. For $l = 0, 1, \cdots, n$, the linear space of l-vectors, spanned by the exterior products $e_I = e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_l}$, corresponding to all ordered l-tuples $I = (i_1, i_2, \cdots, i_l)$, $1 \leq i_1 < i_2 < \cdots < i_l \leq n$, is denoted by $\wedge^l = \wedge^l(\mathbb{R}^n)$. The Grassmann algebra $\wedge = \bigoplus \wedge^l$ is a graded algebra with respect to the exterior products. For $\alpha = \sum \alpha_I e_I \in \wedge$ and $\beta = \sum \beta_I e_I \in \wedge$, the inner product in \wedge is given by $\langle \alpha, \beta \rangle = \sum \alpha_I \beta_I$ with summation over all l-tuples $I = (i_1, i_2, \cdots, i_l)$ and all integers $l = 0, 1, \cdots, n$.

We define the Hodge star operator \star: $\wedge \to \wedge$ by the rule

$$\star 1 = e_1 \wedge e_2 \wedge \cdots \wedge e_n$$

and $\alpha \wedge \star \beta = \beta \wedge \star \alpha = \langle \alpha, \beta \rangle (\star 1)$

for all $\alpha, \beta \in \wedge$.

Hence the norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^2 = \langle \alpha, \alpha \rangle = (\alpha \wedge \star \alpha) \in \wedge^0 = \mathbb{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star : \wedge^l \to \wedge^{n-l}$ and $\star \star (-1)^{l(n-l)} : \wedge^l \to \wedge^l$.

Received by the editors May 15, 1995 and, in revised form, December 8, 1995.

1991 Mathematics Subject Classification. Primary 30C65; Secondary 31B05, 58A10.

Key words and phrases. Conjugate harmonic tensors, differential forms and the A-harmonic equation.
Throughout this paper, we always assume Ω is a connected open subset of \mathbb{R}^n. We write $\mathbb{R} = \mathbb{R}^1$. Cubes or balls are denoted by Q and σQ is the cube or ball with the same center as Q and with $\text{diam}(\sigma Q) = \sigma \text{diam}(Q)$. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^n$ is denoted by $|E|$. Suppose that $w \in L^1_{\text{loc}}(\mathbb{R}^n)$, $w > 0$ a.e., and $0 < p < \infty$. We denote the weighted L^p-norm of a measurable function f over E by

$$
||f||_{p,E,w} = \left(\int_E |f(x)|^p w(x)dx\right)^{1/p}.
$$

A differential l-form ω on Ω is a Schwartz distribution on Ω with values in $\wedge^l(\mathbb{R}^n)$. We denote the space of differential l-forms by $D'(\Omega, \wedge^l)$. We write $L^p(\Omega, \wedge^l)$ for the l-forms $\omega(x) = \sum_I \omega_I(x)dx_I = \sum \omega_{i_1,i_2,\ldots,i_l}(x)dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_l}$ with $\omega_I \in L^p(\Omega, \mathbb{R})$ for all ordered l-tuples I. Thus $L^p(\Omega, \wedge^l)$ is a Banach space with norm

$$
||\omega||_{p,\Omega} = \left(\int_\Omega |\omega(x)|^pdx\right)^{1/p} = \left(\int_\Omega \left(\sum_I |\omega_I(x)|^2\right)^{p/2}dx\right)^{1/p}.
$$

Similarly, $W^l_p(\Omega, \wedge^l)$ are those differential l-forms on Ω whose coefficients are in $W^1_p(\Omega, \mathbb{R})$. The notations $W^l_{p,\text{loc}}(\Omega, \mathbb{R})$ and $W^1_{p,\text{loc}}(\Omega, \wedge^l)$ are self-explanatory. We denote the exterior derivative by $d : D'(\Omega, \wedge^l) \to D'(\Omega, \wedge^{l+1})$ for $l = 0, 1, \ldots, n$. Its formal adjoint operator $d^* : D'(\Omega, \wedge^{l+1}) \to D'(\Omega, \wedge^l)$ is given by $d^* = (-1)^{n-l+1} \ast d \ast$ on $D'(\Omega, \wedge^{l+1})$, $l = 0, 1, \ldots, n$.

Definition 1.1. We call u a p-harmonic function if u satisfies the p-harmonic equation

$$
\text{div}(\nabla u|\nabla u|^{p-2}) = 0
$$

with $p > 1$. Its conjugate in the plane is a q-harmonic function v, $p^{-1} + q^{-1} = 1$, which satisfies

$$
\nabla u|\nabla u|^{p-2} = \left(\frac{\partial u}{\partial y}, -\frac{\partial u}{\partial x}\right).
$$

Note that if $p = q = 2$, we get the usual conjugate harmonic functions. If $\omega : \Omega \to \wedge^l$, then the value of $\omega(x)$ at the vectors $\xi_1, \ldots, \xi_l \in \mathbb{R}^n$ will be denoted by $\omega(x; \xi_1, \ldots, \xi_l)$. The following lemma appears in [IL].

Lemma 1.3. Let $Q \subset \mathbb{R}^n$ be a cube. To each $y \in Q$ there corresponds a linear operator $K_y : C^\infty(Q, \wedge^l) \to C^\infty(Q, \wedge^{l-1})$ defined by

$$
(K_y\omega)(x; \xi_1, \ldots, \xi_l) = \int_0^1 t^{l-1} \omega(tx + y - ty; x - y, \xi_1, \ldots, \xi_{l-1})dt
$$

and the decomposition

$$
\omega = d(K_y\omega) + K_y(d\omega).
$$

We define another linear operator $T_Q : C^\infty(Q, \wedge^l) \to C^\infty(Q, \wedge^{l-1})$ by averaging K_y over points y in Q

$$
T_Q\omega = \int_Q \varphi(y)K_y\omega dy,
$$

where
where \(\varphi \in C_0^\infty(Q) \) is normalized by \(\int_Q \varphi(y)dy = 1 \). We define the \(l \)-form \(\omega_Q \in D'(Q, \wedge^l) \) by
\[
(1.5) \quad \omega_Q = |Q|^{-1} \int_Q \omega(y)dy, \quad l = 0, \quad \text{and} \quad \omega_Q = d(T_Q\omega), \quad l = 1, 2, \cdots, n,
\]
for all \(\omega \in L^p(Q, \wedge^l), \; 1 \leq p < \infty \).

In recent years there has been new interest developed in the study of the \(A \)-harmonic equation for differential forms, largely pertaining to applications in quasiconformal analysis and nonlinear elasticity, that is:
\[
(1.6) \quad d^* A(x, d\omega) = 0,
\]
where \(A : \Omega \times \wedge^l(\mathbb{R}^n) \to \wedge^l(\mathbb{R}^n) \) satisfies the following conditions:
\[
(1.7) \quad |A(x, \xi)| \leq a|\xi|^{p-1} \quad \text{and} \quad \langle A(x, \xi), \xi \rangle \geq |\xi|^p
\]
for almost every \(x \in \Omega \) and all \(\xi \in \wedge^l(\mathbb{R}^n) \). Here \(a > 0 \) is a constant and \(1 < p < \infty \) is a fixed exponent associated with (1.6). A solution to (1.6) is an element of the Sobolev space \(W^{1,p,\text{loc}}(\Omega, \wedge^{l-1}) \) such that
\[
\int_{\Omega} \langle A(x, d\omega), d\varphi \rangle = 0
\]
for all \(\varphi \in W^1_{\text{loc}}(\Omega, \wedge^{l-1}) \) with compact support.

In order to formulate the Hardy-Littlewood type estimate it is required first of all that the equation is written in the form of a first order differential system:
\[
(1.8) \quad A(x, du) = d^* v .
\]

In this way we obtain a pair \((u, v)\) of \((l-1)\)-form \(u \) and \((l+1)\)-form \(v \), called the conjugate \(A \)-harmonic fields. Example: \(du = d^* v \) is an analogue of a Cauchy-Riemann system in \(\mathbb{R}^n \). Clearly, the \(A \)-harmonic equation is not affected by adding a closed form to \(u \) and coclosed form to \(v \). Therefore, any type of estimates between \(u \) and \(v \) must be modulo such forms. Suppose that \(u \) is a solution to (1.6) in \(\Omega \). Then by Poincaré’s lemma, at least locally in a ball \(B \), there exists a form \(v \in W^1_{q,\text{loc}}(B, \wedge^{l+1}) \), \(\frac{1}{p} + \frac{1}{q} = 1 \), such that (1.8) holds.

Definition 1.9. When \(u \) and \(v \) satisfy (1.8) in \(\Omega \), and \(A^{-1} \) exists in \(\Omega \), we call \(u \) and \(v \) conjugate \(A \)-harmonic tensors in \(\Omega \).

Hardy and Littlewood in [HL] proved the following result.

Theorem A. For each \(p > 0 \), there is a constant \(C \) such that
\[
\int_D |u - u(0)|^p dx dy \leq C \int_D |v - v(0)|^p dx dy
\]
for all analytic functions \(f = u + iv \) in the unit disk \(D \).

Craig A. Nolder proves the similar results about \(K \)-quasiregular mappings in [N1] and [N2]. Recently, Craig A. Nolder generalized the above result and proved the following important Theorem B and Theorem C about conjugate \(A \)-harmonic tensors [N3].
Theorem B. Let \(u \) and \(v \) be conjugate \(A \)-harmonic tensors in \(\Omega \subset \mathbb{R}^n, \sigma > 1, \) and \(0 < s, t < \infty \). Then there exists a constant \(C \), independent of \(u \) and \(v \), such that
\[
\| u - u_Q \|_{s, Q} \leq C|Q|^\beta \| v - c_1 \|_{t, \sigma Q}^{q/p}
\]
and
\[
\| v - v_Q \|_{t, Q} \leq C|Q|^{-\beta p/q} \| u - c_2 \|_{s, \sigma Q}^{p/q}
\]
for all cubes \(Q \) with \(\sigma Q \subset \Omega \). Here \(c_1 \) is any form in \(W^1_{p, loc}(\Omega, \Lambda) \) with \(d^* c_1 = 0 \), \(c_2 \) is any form in \(W^1_{q, loc}(\Omega, \Lambda) \) with \(d c_2 = 0 \) and \(\beta = 1/s + 1/n - (1/t + 1/n)q/p \).

Theorem C. Let \(u \in D^\prime(\Omega, \Lambda^0) \) and \(v \in D^\prime(\Omega, \Lambda^2) \) be conjugate \(A \)-harmonic tensors and \(0 < s, t < \infty \). If \(\Omega \) is a \(\delta \)-John domain, \(q \leq p \), \(v - c \in L^t(\Omega, \Lambda^2) \) and
\[
s = \Phi(t) = \frac{npt}{nq + t(q - p)}, \quad 0 < t < \infty,
\]
then \(u \in L^s(\Omega, \Lambda^0) \) and moreover, there exists a constant \(C \), independent of \(u \) and \(v \), such that
\[
\| u - u_{Q_0} \|_{s, \Omega} \leq C \| v - c \|_{t, \Omega}^{q/p}.
\]
Here \(c \) is any form in \(W^1_{q, loc}(\Omega, \Lambda) \) with \(d^* c = 0 \).

Our main results Theorem 2.4 and Theorem 3.4 generalize (1.10) and (1.12), respectively.

2. **The local weighted integral inequality**

We will use the following generalized Hölder’s inequality.

Lemma 2.1. Let \(0 < \alpha < \infty, 0 < \beta < \infty \) and \(s^{-1} = \alpha^{-1} + \beta^{-1} \). If \(f \) and \(g \) are measurable functions on \(\mathbb{R}^n \), then
\[
\| fg \|_{s, \Omega} \leq \| f \|_{\alpha, \Omega} \cdot \| g \|_{\beta, \Omega}
\]
for any \(\Omega \subset \mathbb{R}^n \).

The following definition appears in [G].

Definition 2.2. We say the weight \(w(x) > 0 \) satisfies the \(A_r \) condition, \(r > 1 \), if
\[
\sup_Q \left(\frac{1}{|Q|} \int_Q w(x) dx \right) \left(\frac{1}{|Q|} \int_Q \left(\frac{1}{w} \right)^{1/(r - 1)} dx \right)^{r^{-1}} < \infty
\]
for any cube \(Q \subset \mathbb{R}^n \).

We also need the following lemma [G].

Lemma 2.3. If \(w \in A_r, r > 1 \), then there exist constants \(\beta > 1 \) and \(C \), independent of \(w \), such that
\[
\| w \|_{\beta, Q} \leq C|Q|^{(1 - \beta)/\beta} \| w \|_{1, Q}
\]
for all cubes \(Q \subset \mathbb{R}^n \).

Now, we can prove the following local weighted result.
Theorem 2.4. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^n$ and $w \in A_r$. Let $s = \Phi(t)$ be defined by (1.11). Then there exists a constant C, independent of u and v, such that

\[
(2.5) \quad \left(\int_Q |u - u_Q|^s w dx \right)^{1/s} \leq C \left(\int_{\sigma Q} |v - c|^t w^{pt/qs} dx \right)^{q/p},
\]

for all cubes Q with $\sigma Q \subset \Omega \subset \mathbb{R}^n$ and $\sigma > 1$. Here c is any form in $W_{q,loc}^1(\Omega, \Lambda)$ with $d^*c = 0$.

Proof. By Lemma 2.3, there exist constants $\alpha > 1$ and C_1, independent of w, such that

\[
(2.6) \quad \| w \|_{\alpha,\sigma Q} \leq C_1 |Q|^{(1-\alpha)/\alpha} \| w \|_{1,\sigma Q}.
\]

Since $1/\alpha s + (\alpha - 1)/\alpha s = 1/s$, then by Lemma 2.1, we have

\[
(2.7) \quad \| u - u_Q \|_{s,\sigma Q, w} \leq \| w \|_{\alpha, Q}^{1/s} \| u - u_Q \|_{\alpha s/(\alpha - 1), Q}.
\]

By Theorem B, there is a constant C_2, independent of u and v, such that for any $t' > 0$, we have

\[
(2.8) \quad \| u - u_Q \|_{\alpha s/(\alpha - 1), Q} \leq C_2 |Q|^\beta' \| v - c \|_{\alpha, \sigma Q}^{q/p},
\]

where $\beta' = (\alpha - 1)/\alpha s + 1/n - (1/t' + 1/n)q/p$. Combining (2.7) and (2.8), we obtain

\[
(2.9) \quad \| u - u_Q \|_{s,\sigma Q, w} \leq C_2 |Q|^\beta' \| w \|_{\alpha, Q}^{1/s} \| v - c \|_{\alpha, \sigma Q}^{q/p}.
\]

Now, choose $t' = t/k$, where k is to be determined later, and note $|v - c| = w^{-n/q} |v - c| w^{pt/qs}$; by Lemma 2.1, we get

\[
(2.10) \quad \| v - c \|_{t', \sigma Q} \leq \| (1/w)^{pt/qs} \|_{1/(k-1), \sigma Q}^{1/t} \left(\int_{\sigma Q} |v - c|^t w^{pt/qs} dx \right)^{1/k}.
\]

From (2.6), (2.9) and (2.10) we have

\[
(2.11) \quad \| u - u_Q \|_{s,\sigma Q, w} \leq C_3 \bigg| Q \bigg|^{\beta' + (1-\alpha)/\alpha s} \| w \|_{1,\sigma Q}^{1/s} \cdot \| (1/w)^{pt/qs} \|_{1/(k-1), \sigma Q}^{q/p} \left(\int_{\sigma Q} |v - c|^t w^{pt/qs} dx \right)^{q/p}.
\]

We choose $k = 1 + pt(r - 1)/qs$. Then $(k - 1)qs/pt = r - 1$, and by $w \in A_r$, we know

\[
(2.12) \quad \| w \|_{1,\sigma Q}^{1/s} \| (1/w)^{pt/qs} \|_{1/(k-1), \sigma Q}^{q/p} = \bigg| Q \bigg|^{1/s + (k-1)q/pt} \left(\frac{1}{\sigma Q} \right)^{1/(k-1)} \left(\frac{1}{\sigma Q} \right)^{1/(r-1)} \left(\frac{1}{w} \right)^{1/(r-1)} dx \right)^{1/s} \leq C_4 |Q|^{1/s + (k-1)q/pt}.
\]

By (2.11) and (2.12), we have

\[
(2.13) \quad \| u - u_Q \|_{s,\sigma Q, w} \leq C_5 |Q|^r \left(\int_{\sigma Q} |v - c|^t w^{pt/qs} dx \right)^{q/p}.
\]
where $\gamma = \beta^* + (1 - \alpha)/\alpha s + 1/s + q(k - 1)/pt = -(nq + t(q - p))/npt + 1/s = 0$ by (1.11). So (2.13) becomes
\[
\| u - u_Q \|_{s,Q,w} \leq C \left(\int_{\sigma Q} |v - c|^q w^{pt/qs} \, dx \right)^{q/pt},
\]
that is,
\[
\left(\int_Q |u - u_Q|^s w \, dx \right)^{1/s} \leq C \left(\int_{\sigma Q} |v - c|^q w^{pt/qs} \, dx \right)^{q/pt}.
\]
We have completed the proof of Theorem 2.4.

3. THE GLOBAL WEIGHTED INTEGRAL INEQUALITY

Definition 3.1. We call Ω, a proper subdomain of \mathbb{R}^n, a δ-John domain, $\delta > 0$, if there exists a point $x_0 \in \Omega$ which can be joined with any other point $x \in \Omega$ by a continuous curve $\gamma \subset \Omega$ so that
\[
d(\xi, \partial \Omega) \geq \delta|x - \xi|
\]
for each $\xi \in \gamma$. Here $d(\xi, \partial \Omega)$ is the Euclidean distance between ξ and $\partial \Omega$.

We know that a δ-John domain has the following properties [N3].

Lemma 3.2. Let $\Omega \subset \mathbb{R}^n$ be a δ-John domain. Then there exists a covering \mathcal{V} of Ω consisting of open cubes such that:

i) $\sum_{Q \in \mathcal{V}} \chi_Q(x) \leq N \chi_{\Omega}(x)$, $x \in \mathbb{R}^n$.

ii) There is a distinguished cube $Q_0 \in \mathcal{V}$ (called the central cube) which can be connected with every cube $Q \in \mathcal{V}$ by a chain of cubes $Q_0, Q_1, \cdots, Q_k = Q$ from \mathcal{V} such that for each $i = 0, 1, \cdots, k - 1$,
\[
Q \subset NQ_i.
\]
There is a cube $R_i \subset \mathbb{R}^n$ (this cube does not need to be a member of \mathcal{V}) such that
\[
R_i \subset Q_i \cap Q_{i+1}, \quad \text{and} \quad Q_i \cup Q_{i+1} \subset NR_i.
\]

The following lemma appears in [IN].

Lemma 3.3. If \mathcal{V} is a collection of cubes in \mathbb{R}^n and C_Q are non-negative numbers associated with the cubes $Q \in \mathcal{V}$ and $w \in A_r$, $d\mu(x) = w(x) \, dx$, then for $1 \leq p < \infty$ and $N \geq 1$ we have
\[
\left(\int_{\mathbb{R}^n} \left(\sum_{Q \in \mathcal{V}} C_Q \chi_{NQ} \right)^p \, d\mu(x) \right)^{1/p} \leq B_p \left(\int_{\mathbb{R}^n} \left(\sum_{Q \in \mathcal{V}} C_Q \chi_Q \right)^p \, d\mu(x) \right)^{1/p},
\]
where B_p is independent of the collection \mathcal{V} and the numbers C_Q.

Theorem 3.4. Let $u \in D'(\Omega, \Lambda^0)$ and $v \in D'(\Omega, \Lambda^2)$ be conjugate A-harmonic tensors. Let $q \leq p$, $v - c \in L'(\Omega, \Lambda^2)$, $w \in A_r$ and $s = \Phi(t)$ is defined in (1.11). Then there exists a constant C, independent of u and v, such that
\[
\left(\int_\Omega |u - u_{Q_0}|^s w \, dx \right)^{1/s} \leq C \left(\int_\Omega |v - c|^q w^{pt/qs} \, dx \right)^{q/pt}
\]
for any δ-John domain $\Omega \subset \mathbb{R}^n$. Here c is any form in $W^1_{q, \text{loc}}(\Omega, \Lambda)$ with $d^* c = 0$ and $Q_0 \subset \Omega$ is the cube appearing in Lemma 3.2.
Proof. Since $w \in A_r$, we can write $d\mu(x) = w(x)dx$; then (2.5) can be written as

$$\int_{Q} |u - u_Q|^s d\mu(x) \leq C \left(\int_{\sigma Q} |v - c|^t w^{pt/q^*} dx \right)^{qs/pt}. \tag{3.5}$$

We use the notations and the covering \mathcal{V} described in the above Lemma 3.2 and the properties of the measure $d\mu(x) = w(x)dx$: if $w \in A_r$, then

$$\mu(NQ) \leq MN^{nr} \mu(Q) \tag{3.6}$$

for each cube Q with $NQ \subset \mathbb{R}^n$ (see [G]) and

$$\max(\mu(Q_i), \mu(Q_{i+1})) \leq MN^{nr} \mu(Q_i \cap Q_{i+1}) \tag{3.7}$$

for the sequence of cubes $Q_i, Q_{i+1}, i = 0, 1, \ldots, k - 1$ described in ii). We will use the elementary inequality $|a + b|^s \leq 2^s(|a|^s + |b|^s)$ for all $s > 0$. In particular we have

$$\int_{\Omega} |u - u_Q|^s wdx = \int_{\Omega} |u - u_Q|^s d\mu(x) \leq 2^s \sum_{Q \in \mathcal{V}} \int_{Q} |u - u_Q|^s d\mu(x) + 2^s \sum_{Q \in \mathcal{V}} \int_{Q} |u_Q - u_Q|^s d\mu(x). \tag{3.8}$$

The first sum can be estimated by (3.5) and the condition i):

$$\sum_{Q \in \mathcal{V}} \int_{Q} |u - u_Q|^s d\mu(x) \leq C_1 \sum_{Q \in \mathcal{V}} \left(\int_{\sigma Q} |v - c|^t w^{pt/q^*} dx \right)^{qs/pt} \tag{3.9}$$

$$\leq C_1 N \left(\int_{\Omega} |v - c|^t w^{pt/q^*} dx \right)^{qs/pt}.$$

Now we estimate the second sum in (3.8). Fix a cube $Q \in \mathcal{V}$ and let $Q_0, Q_1, \ldots, Q_k = Q$ be the chain from ii). We have

$$|u_{Q_0} - u_Q| \leq \sum_{i=0}^{k-1} |u_{Q_i} - u_{Q_{i+1}}|. \tag{3.10}$$

From (3.5) and (3.7) we have

$$|u_{Q_i} - u_{Q_{i+1}}|^s = \frac{1}{\mu(Q_i \cap Q_{i+1})} \int_{Q_i \cap Q_{i+1}} |u_{Q_i} - u_{Q_{i+1}}|^s d\mu(x) \leq \frac{1}{\max(\mu(Q_i), \mu(Q_{i+1}))} \int_{Q_i \cap Q_{i+1}} |u_{Q_i} - u_{Q_{i+1}}|^s d\mu(x) \tag{3.11}$$

$$\leq C_2 \sum_{j=i}^{i+1} \frac{1}{\mu(Q_j)} \int_{Q_j} |u - u_Q|^s d\mu(x) \leq C_3 \sum_{j=i}^{i+1} \frac{1}{\mu(Q_j)} \left(\int_{\sigma Q_j} |v - c|^t w^{pt/q^*} dx \right)^{qs/pt} \tag{3.12}$$

Since $Q \subset NQ_j$ for $j = i, i + 1, 0 \leq i \leq k - 1$ (see ii)), we have

$$|u_{Q_i} - u_{Q_{i+1}}|^s \chi_Q(x) \leq C_3 \sum_{j=i}^{i+1} \frac{X_{NQ_j}(x)}{\mu(Q_j)} \left(\int_{\sigma Q_j} |v - c|^t w^{pt/q^*} dx \right)^{qs/pt} \tag{3.13}.$$
By (3.10) we have (note $|a + b|^{1/s} \leq 2^{1/s}(|a|^{1/s} + |b|^{1/s})$)

$$|u_{Q_0} - u_Q| \chi_Q(x) \leq C_4 \sum_{R \in V} \left(\frac{1}{\mu(R)} \left(\int_{\sigma R} |v - c|^t w^{pt/q^s} \, dx \right)^{qs/pt} \right)^{1/s} \chi_{NR}(x)$$

for every $x \in \mathbb{R}^n$. Hence

(3.11)

$$\sum_{Q \in V} \int_Q |u_{Q_0} - u_Q|^s d\mu(x)$$

$$\leq C_5 \int_{\mathbb{R}^n} \left| \sum_{R \in V} \left(\frac{1}{\mu(R)} \left(\int_{\sigma R} |v - c|^t w^{pt/q^s} \, dx \right)^{qs/pt} \right)^{1/s} \chi_{NR}(x) \right|^s \, d\mu(x).$$

If $0 \leq s \leq 1$, we use the inequality $|\sum t_\alpha|^s \leq \sum |t_\alpha|^s$, (3.6) and the condition i) to get

$$\sum_{Q \in V} \int_Q |u_{Q_0} - u_Q|^s d\mu(x) \leq C_6 \sum_{R \in V} \frac{\mu(N R)}{\mu(R)} \left(\int_{\sigma R} |v - c|^t w^{pt/q^s} \, dx \right)^{qs/pt}$$

$$\leq C_7 \sum_{R \in V} \left(\int_{\sigma R} |v - c|^t w^{pt/q^s} \, dx \right)^{qs/pt}.$$

Note $qs/pt \geq 1$ and $\sum t_\alpha^p \leq (\sum t_\alpha)^p$ for $p \geq 1$ and $t_\alpha > 0$; then

$$\sum_{Q \in V} \int_Q |u_{Q_0} - u_Q|^s d\mu(x) \leq C_7 \sum_{R \in V} \left(\int_{\Omega} |v - c|^t w^{pt/q^s} \chi_{\sigma R}(x) \, dx \right)^{qs/pt}$$

$$\leq C_7 \left(\int_{\Omega} |v - c|^t w^{pt/q^s} \chi_{\sigma R}(x) \, dx \right)^{qs/pt} \leq C_7 \left(\int_{\Omega} |v - c|^t w^{pt/q^s} \chi_{\sigma R}(x) \, dx \right)^{qs/pt} \leq C_7 \left(\int_{\Omega} |v - c|^t w^{pt/q^s} \chi_{\sigma R}(x) \, dx \right)^{qs/pt}.$$
with the elementary inequality $|\sum_{i=1}^{N} t_i|^s \leq N^{s-1} \sum_{i=1}^{N} |t_i|^s$; we obtain

$$\sum_{Q \in V} \int_Q |u_{Q,0} - u_Q|^s d\mu(x) \leq C_{10} \int_{R^n} \left(\sum_{R \in V} \frac{1}{\mu(R)} \left(\int_{\sigma R} |v - c|^t u^{pt/qs} dx \right)^{qs/pt} \chi_R(x) \right) d\mu(x)$$

(3.13)

$$= C_{10} \sum_{R \in V} \left(\int_{\sigma R} |v - c|^t u^{pt/qs} dx \right)^{qs/pt} \leq C_{11} \left(\int_{\Omega} |v - c|^t u^{pt/qs} dx \right)^{qs/pt}$$

by the condition i). Combining (3.8), (3.9) and (3.13), we have proved the theorem for the case $1 \leq s < \infty$; thus, we have completed the proof of Theorem 3.4.

ACKNOWLEDGMENTS

I would like to thank Professor Craig A. Nolder for his advice and continuous encouragement in the preparation of this paper. The author also thanks the referee and the editor, Professor T.W. Gamelin, for their precious and thoughtful suggestions on this paper.

REFERENCES

