Weighted Hardy-Littlewood inequality for $A$-harmonic tensors
HTML articles powered by AMS MathViewer
- by Shusen Ding
- Proc. Amer. Math. Soc. 125 (1997), 1727-1735
- DOI: https://doi.org/10.1090/S0002-9939-97-03762-3
- PDF | Request permission
Abstract:
In this paper we prove a local weighted integral inequality for conjugate $A$-harmonic tensors similar to the Hardy and Littlewood integral inequality for conjugate harmonic functions. Then by using the local weighted integral inequality, we prove a global weighted integral inequality for conjugate $A$-harmonic tensors in John domains.References
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), no. 3, 225–253. MR 759098, DOI 10.1016/0022-1236(84)90041-7
- J. B. Garnett, Bounded Analytic Functions, New York, Academic Press, 1970.
- G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405–423.
- Tadeusz Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), no. 3, 589–624. MR 1189867, DOI 10.2307/2946602
- Tadeusz Iwaniec and Adam Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), no. 1, 25–79. MR 1241286, DOI 10.1007/BF00411477
- Tadeusz Iwaniec and Gaven Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), no. 1, 29–81. MR 1208562, DOI 10.1007/BF02392454
- T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267–282. MR 802488, DOI 10.5186/aasfm.1985.1030
- Craig A. Nolder, A characterization of certain measures using quasiconformal mappings, Proc. Amer. Math. Soc. 109 (1990), no. 2, 349–356. MR 1013976, DOI 10.1090/S0002-9939-1990-1013976-2
- Craig A. Nolder, A quasiregular analogue of a theorem of Hardy and Littlewood, Trans. Amer. Math. Soc. 331 (1992), no. 1, 215–226. MR 1036007, DOI 10.1090/S0002-9947-1992-1036007-3
- C. A. Nolder, Hardy-Littlewood theorems for $A$-harmonic tensors, Illinois J. Math., to appear.
- B. Stroffolini, On weakly $A$-harmonic tensors, Studia Math., 3 114 (1995), 289–301.
Bibliographic Information
- Shusen Ding
- Email: sding@d.umn.edu
- Received by editor(s): May 15, 1995
- Received by editor(s) in revised form: December 8, 1995
- Communicated by: Theodore W. Gamelin
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1727-1735
- MSC (1991): Primary 30C65; Secondary 31B05, 58A10
- DOI: https://doi.org/10.1090/S0002-9939-97-03762-3
- MathSciNet review: 1372027