TOPOLOGICAL ENTROPY FOR GEODESIC FLOWS UNDER A RICCI CURVATURE CONDITION

SEONG-HUN PAENG

(Communicated by Mary Rees)

Abstract. It is known that the topological entropy for the geodesic flow on a Riemannian manifold M is bounded if the absolute value of sectional curvature $|K_M|$ is bounded. We replace this condition by the condition of Ricci curvature and injectivity radius.

1. Introduction

The topological entropy is the most important invariant related to the orbit growth of a dynamical system. It represents the exponential growth rate for the number of orbit segments. In a sense, topological entropy describes the total exponential complexity of the orbit structure.

The topological entropy for geodesic flows is closely related to the curvatures of manifolds since geodesic flows depend on the metrics of manifolds. Let ϕ_t be a geodesic flow on a Riemannian manifold M and $h(\phi_t)$ be the topological entropy for ϕ_t. It was known that if the absolute value of sectional curvature satisfies $|K_M| < k$, then the topological entropy for geodesic flows satisfies $h(\phi_t) \leq (n-1)\sqrt{k}$ by [Ma2]. Manning also proved that in the case of $K_M < 0$, the topological entropy for geodesic flows is the same as the volume growth rate, $\lim_{r \to \infty} r^{-1} \log V(x, r)$, where $V(x, r)$ is the volume of the ball $B(x, r)$ contained in the universal covering space [Ma1]. This result was extended to the case of manifolds without conjugate points by Mañé [FM].

Bishop’s comparison theorem [GHL] implies that if Ricci curvature satisfies $\text{Ric}_M \geq -k$ and the injectivity radius of the universal covering space of M is infinite, then $h(\phi_t) \leq \sqrt{(n-1)k}$.

We prove the following theorem;

Theorem. Let k, i_0 be positive real numbers. Then there exists a constant $C(i_0, n, k)$ such that for every n-dimensional compact Riemannian manifold M with $\text{Ric}_M \geq -k$, $\text{inj}_M \geq i_0$, the topological entropy for geodesic flow of M is bounded by $C(i_0, n, k)$, where inj_M is the injectivity radius of M.
2. Preliminaries

Let X be a compact metric space with the distance function d, and let $\phi = \{\phi_t : X \to X\}$ be a flow, i.e. 1-parameter subgroup of homeomorphisms. Define

$$d_T^\phi(x,y) := \max\{d(\phi_t(x), \phi_t(y)) | 0 \leq t \leq T\}.$$

Let $S_d(\phi, \epsilon, T)$ be the minimal number of balls of radius ϵ in the metric d_T^ϕ which cover X. Define

$$h_d(\phi, \epsilon) := \lim_{T \to \infty} \frac{1}{T} \log S_d(\phi, \epsilon, T).$$

Then the topological entropy for ϕ is defined as follows:

$$h(\phi) := \lim_{\epsilon \to 0} h_d(\phi, \epsilon).$$

The following proposition is Brocks' estimate on the Laplacian of the distance function.

Proposition ([B, DSW]). Let M be an n-dimensional complete Riemannian manifold with $\text{Ric}_M \geq -k$, $\text{inj}_M \geq i_0$. Let r be a distance function from p and γ be a geodesic from p. Consider r and Δr as functions of t on γ. Then $C_1(i_0, n, k) \leq \Delta r - \frac{n-1}{r} \leq C_2(i_0, n, k)$ for some constants C_1, C_2 depending only on i_0, n, k on $[0, i_0/2]$.

The following lemma is important to estimate the upper bound of the topological entropy. It is proved in the discrete time case in [KH]. In this case, almost the same proof can be applied.

Lemma 1. Let X be a compact metric space and $\phi = \{\phi_t\}$ be a flow on M with $d(\phi_t(x), \phi_t(y)) \leq e^{TC} d(x,y)$ for some constant C. Then $h(\phi) \leq |C| D(X)$ where $D(X)$ is the ball dimension defined by $D(X) := \lim_{\epsilon \to 0} \frac{\log b(\epsilon)}{\log(\epsilon)}$, and $b(\epsilon)$ is the minimum number of a covering of X by ϵ-balls.

Proof. By assumption, $d(\phi_t(x), \phi_t(y)) \leq e^{TC} d(x,y)$, for $t \leq T$. Then we easily know $\phi_t(B(x, \epsilon/e^{TC})) \subset B(\phi_t(x), \epsilon)$, for $t \leq T$. So $B_d(x, \epsilon/e^{TC}) \subset B_{d_T^\phi}(x, \epsilon)$ and $S(\phi, \epsilon, t) \leq b(\epsilon/e^{TC})$, where $B_d(x, r)$ is the r-ball in d-metric.

Then we obtain

$$\limsup_{T \to \infty} \frac{1}{T} \log S(\phi, \epsilon, T) \leq \limsup_{T \to \infty} \frac{1}{T} \log b(\epsilon/e^{TC})$$

$$\leq \limsup_{T \to \infty} \frac{1}{T} \log \frac{\log b(\epsilon/e^{TC})}{\log(\epsilon/e^{TC})} \leq D(X) |C|.$$

It is known that $D(X) = \dim X$, when X is a topological manifold.
3. Proof of Theorem

In the calculation of the entropy, it is an important step to define a metric on the unit tangent bundle, T_1M. Let $\gamma_\nu(t)$ be the geodesic on M with $\gamma_\nu'(0) = v_p$.

In Manning’s paper [Ma1], a metric on T_1M is defined as follows:

\[d_1(v_p, w_q) := \sup_{0 \leq t \leq 1} d(\gamma_\nu(t), \gamma_w(t)). \]

In [KH], they used the following metric:

\[d_2(v_p, w_q) := d(p, q) + ||P^q_p(v_p) - w_q||, \]

where $P^q_p(v_p)$ is the parallel translation of v_p along the geodesic from p to q.

Now we construct a metric on T_1M as follows. Since $\text{inj}_M \geq i_0$, it is possible to identify $v_p \in T_1M$ with the geodesic $\gamma_\nu(t)$, $t \in [0, i_0/4]$ with $\gamma_\nu'(0) = v_p$. Then we may consider a Jacobi field J along $\gamma_\nu(t)$ as a tangent vector at $v_p \in T_1M$, where J is generated by a C^∞-rectangle $Q(t, s)$ such that $\frac{\partial Q}{\partial s}(t, 0) = J(t), ||\frac{\partial Q}{\partial t}(t, s)|| = 1$ for any s and $0 \leq t \leq i_0/4$ and $Q(t, s_0)$ is a geodesic for any fixed s_0. In this identification, we consider a C^∞-rectangle, $Q(t, s)$, where $0 \leq s \leq 1$ and $0 \leq t \leq i_0/4$, as a C^∞-curve on T_1M from $\frac{\partial Q}{\partial t}(0, 0)$ to $\frac{\partial Q}{\partial t}(0, 1)$.

Then we define an inner product of tangent vectors and a distance on T_1M as follows.

Definition. Let J_1, J_2 be tangent vectors on T_1M, i.e. Jacobi fields with above property. Then

\[(J_1, J_2) = \int_0^{i_0/4} (J_1(t), J_2(t))dt, \]

\[d(v_p, w_q) = \inf \int_0^1 (\frac{\partial Q}{\partial s}, \frac{\partial Q}{\partial s})^2 ds = \inf \int_0^{i_0/4} ||\frac{\partial Q}{\partial s}|| dt ds, \]

where the inf is taken over piecewise C^∞-curves Q on T_1M from v_p to w_q, i.e.

\[\frac{\partial Q}{\partial t}(0, 0) = v_p \text{ and } \frac{\partial Q}{\partial t}(0, 1) = w_q. \]

Since T_1M is a compact Hausdorff space, the above metrics induce the same topology. Now we will prove a key lemma.

Lemma 2. Let M be a complete Riemannian manifold with $\text{Ric}_M \geq -k$, $\text{inj}_M \geq i_0$ and let $\gamma(t)$ be a minimal geodesic starting from q and $J(t)$ is a Jacobi field along γ such that $J(0) = 0$ and $\langle J'(0), \gamma'(0) \rangle = 0$. Then $||\gamma|| = e^{\int_0^2 ||J'||(0)}$ for some constant $D(i_0, n, k)$ if $t < i_0/2$.

Proof. The first half of the proof of this lemma is contained in the proof of the proposition 5.1 of [DSW]. Let $v, w \in T_qM$ and $||v|| = ||w|| = q_0 \leq i_0/2$. Define $Q(t, s) := \exp(tV(s))$, where $V(s)$ is the geodesic on S^{n-1} such that $V(0) = v, V(s_0) = w$. Let $\gamma(t) = \exp_q tV(0)$ and $r(x) = d(q, x)$. Then $J(t) = \frac{\partial Q}{\partial s}(t, 0)$ is a Jacobi field with above property. Then,

\[J' = \nabla_{\gamma'}J = \nabla_J \gamma' = \nabla_J \nabla r = \nabla \nabla r(J). \]

Define $A := \nabla \nabla r = \text{Hess } r$, so $\text{tr} A = \Delta r$ and $J' = AJ$.
Now we will estimate the \(||A|||\). Write \(A(t) = B(t) + I/t\). From the Jacobi
equation \(J'' + R(J,T)T = 0\) and \(J' = AJ\), we obtain the Riccati equation
\(A' + A^2 + R = 0\) and substituting \(A(t) = B(t) + I/t\), we get \(B' + B^2 + \frac{2}{t}B + R = 0\).

Then, \(tr B' + ||B||^2 + \frac{2}{t}tr B + \text{Ric}(\gamma') \leq 0\) since \(||B||^2 \leq tr B'B = tr B^2\), where \(B'\)
is the transpose of \(B\) and \(B\) is a symmetric matrix.

Multiplying the above equality by a factor \(t^\frac{1}{2}\) and integrating along \(\gamma(t)\), we
obtain the following equality:
\[
\int_0^{t_0} ||B||^2 t^\frac{1}{2} \leq -\frac{1}{3} t_0^3 tr B(t_0) - \frac{3}{2} \int_0^{t_0} t^{-\frac{1}{2}} tr B(t) - \int_0^{t_0} t^\frac{1}{2} \text{Ric}(\gamma').
\]

Also using the Proposition ([B, DSW]) in §2, \(|\Delta r - \frac{n-1}{t}||| \leq C(i_0, n, k)\) for some
constant \(C(i_0, n, k)\) on \([0, i_0/2]\). Then we get \(|tr B| = |tr A - \frac{n-1}{t}| = |\Delta r - \frac{n-1}{t}| \leq C(i_0, n, k)\).

So \(\int_0^{t_0} ||B||^2 t^\frac{1}{2} \leq D_1(i_0, n, k)\), for some constant \(D_1\).

Using the Hölder inequality,
\[
\int_0^{t_0} ||B|| \leq (\int_0^{t_0} t^{-\frac{1}{2}}) \frac{1}{2} (\int_0^{t_0} t^{\frac{1}{2}} ||B||^2)^{\frac{1}{2}} \leq D(i_0, n, k).
\]

Then we have
\[
||J'|| \leq ||J'|| \leq \left(||(B + \frac{I}{t})(J)|| \leq ||B||||J|| + \frac{||J||}{t},
\right)
\]
\[
\int_0^{t_0} \frac{||J'||}{||J||} \leq D + \log l_0 - \log \delta,
\]
\[
\log(\frac{||J||(l_0)}{||J||(l_0)}) \leq D + \log(l_0),
\]
\[
||J||(l_0) \leq e^{Dl_0} \frac{||J||(l_0)}{\delta},
\]
\[
||J||(l_0) \leq \lim_{\delta \to 0} e^{Dl_0} \frac{||J||(l_0)}{\delta} = e^{Dl_0} ||J'||(0),
\]
which completes the proof.

From Lemma 5.2 in [DSW], we know that \(||J(t)|| \leq \frac{t}{t_0} e^D ||J(t_0)||\), \(0 \leq t \leq t_0 < i_0\). Then \(||J'(0)|| = \lim_{t \to 0} \frac{||J(t)||}{t} \leq e^D ||J(t_0)||\).

From lemma 2 and the above inequality, we obtain the following inequality:
\[
(1) \quad e^{-D} ||J'(0)|| \leq ||J(t)|| \leq e^D ||J'(0)|| t.
\]

Also we know that
\[
(2) \quad K_1 ||J(i_0/4)|| \leq ||J'(0)|| \leq K_2 ||J(i_0/4)||,
\]
for some constants \(K_1, K_2\) depending only on \(i_0, n, k\). Consequently,
\[
(3) \quad K_3 ||J(i_0/4)|| t \leq ||J(t)|| \leq K_4 ||J(i_0/4)|| t.
\]

If \((J'(0), \gamma'(0)) \neq 0\), we can decompose \(J\) into tangential and perpendicular
components and obtain the above boundedness (3), since tangential component is linear in \(t\) [DSW].
Lemma 3. If h is sufficiently small,
\[d(\phi_h(v_p), \phi_h(w_q)) - d(v_p, w_q) \leq N(i_0, n, k)d(v_p, w_q)h, \]
for some constant $N(i_0, n, k)$.

Proof. Let $Q(t, s)$ be a length minimizing curve from v_p to w_q, i.e. a piecewise C^∞-rectangle which realizes the distance from v_p to w_q. We may assume the existence of a length minimizing curve.

Then we know that
\[
 d(v_p, w_q) = \int_0^1 \int_0^{i_0/4} || \frac{\partial Q}{\partial s} || dt ds
\]
and
\[
 d(\phi_h(v_p), \phi_h(w_q)) \leq \int_0^1 \int_{i_0/4}^{i_0/4+h} || \frac{\partial Q}{\partial s} || dt ds.
\]
So we get
\[
 d(\phi_h(v_p), \phi_h(w_q)) - d(v_p, w_q) \leq \int_0^1 \int_0^{h} + \int_0^1 \int_{i_0/4}^{i_0/4+h} || \frac{\partial Q}{\partial s} || dt ds.
\]
Let $\frac{\partial Q}{\partial s}(0, s) = V(s)$ and $\frac{\partial Q}{\partial s}(i_0/4, s) = W(s)$. Decompose J into J_1 and J_2 such that $J_3(0) = 0$, $J_2(i_0/4) = 0$. Then $||J_2(0)|| = ||V||$ and $||J_1(i_0/4)|| = ||W||$.

If $||V|| = ||W|| = 0$, then $J(t) = J_1(t) = J_2(t) = 0$ for all $t \leq i_0/4$ and $v_p = w_q$. So we do not need consider this case. From now on we may assume $||V|| \neq 0$. Then by (3), we have

(4) \[K_3||W||t \leq ||J_1(t)|| \leq K_4||W||t, \]
(5) \[K_3||V||t \leq ||J_2(i_0/4 - t)|| \leq K_4||V||t. \]

Thus we have
\[
 d(\phi_h(v_p), \phi_h(w_q)) - d(v_p, w_q) \leq \int_0^h \int_0^{1} + \int_{i_0/4}^{i_0/4+h} \int_0^1 ||J(t)|| ds dt
\]
\[
 \leq \int_0^h \int_0^{1} + \int_{i_0/4}^{i_0/4+h} \int_0^1 ||J_1(t)|| ds dt
\]
\[
 + \int_0^h \int_0^{1} + \int_{i_0/4}^{i_0/4+h} \int_0^1 ||J_2(t)|| ds dt
\]
\[
 \leq (\int_{i_0/4}^{i_0/4+h} + \int_0^h K_4 td t)(\int_0^1 ||V|| + ||W|| ds)
\]
\[
 \leq K(i_0, n, k)(\int_0^1 ||V|| + ||W|| ds)h,
\]
for some constant $K(i_0, n, k)$. Now compute the $d(v_p, w_q)$. Let
\[
 a = \frac{i_0 K_4||V||}{4(K_3||V|| + K_4||W||)}, \quad b = \frac{i_0 K_4||W||}{4(K_3||V|| + K_4||W||)}.
\]
On \([0, a]\), we know that \(\|J_2(t)\| \geq \|J_1(t)\|\) and on \([i_0/4 - b, i_0/4]\), \(\|J_1(t)\| \geq \|J_2(t)\|\) by (4) and (5). So we obtain

\[
d(v_p, w_q) = \int_0^{i_0/4} \int_0^1 ||J|| ds dt
\]

\[
\geq \int_0^1 \int_0^a ||J_2|| - ||J_1|| ds dt + \int_0^1 \int_{i_0/4-b}^{i_0/4} ||J_1|| - ||J_2|| dt ds
\]

\[
\geq \int_0^1 \int_0^a K_3||V||((i_0/4 - t) - K_4||W||) dt ds
\]

\[
+ \int_0^1 \int_{i_0/4-b}^{i_0/4} K_3||W||t - K_4||V||(i_0/4 - t) dt ds.
\]

The integral \(\int_0^a K_3||V||((i_0/4 - t) - K_4||W||) dt ds\) is the area of

\(\{(x, y) \mid K_4||W||x \leq y \leq K_3||V||((i_0/4 - x), \ x \leq a\}.\)

Hence we get

\[
\int_0^a ||J_2|| - ||J_1|| \geq ai_0K_3||V||/8 = i_0^2K_3/32 \frac{K_3||V||^2}{K_4||V|| + K_3||W||}.
\]

Similarly we get

\[
\int_{i_0/4-b}^{i_0/4} ||J_1|| - ||J_2|| \geq i_0^2K_3/32 \frac{K_3||W||^2}{K_4||V|| + K_3||W||}.
\]

It is an easy calculation that

\[
\int_0^{i_0/4} ||J|| dt \geq \frac{a_1(||V||^2||W|| + ||V||||W||^2) + a_2(||V||^3 + ||W||^3)}{b_1(||W||^2 + ||V||^2) + b_2||V||||W||},
\]

for some positive constant \(a_i, b_i\) depending only on \(i_0, n, k\).

Then we obtain

\[
\frac{||V|| + ||W||}{\int_0^{i_0/4} ||J|| dt} \leq \frac{b_1(||V||^3 + ||W||^3) + c_1(||V||^2||W|| + ||V||||W||^2) + a_2(||V||^3 + ||W||^3)}{c_1(||V||^2||W|| + ||V||||W||^2) + b_2||V||||W||^2 + b_1||W||^3}
\]

\[
= \frac{b_1||V||^3 + c_1||V||^2||W|| + c_1||V||||W||^2 + a_2||V||^3 + ||W||^3)}{a_2||V||^3 + c_1||V||^2||W|| + a_1||V||||W||^2 + a_2||W||^3}
\]

\[
= \frac{b_1 + c_1||V||^2||W|| + c_1||V||||W||^2 + b_1||W||^3)}{a_2 + a_1||V||^2||W|| + a_1||W||^2||W||^2 + a_2||W||^3}
\]

\[
\leq C_0(i_0, n, k),
\]

for some positive constants \(c_1(i_0, n, k), C_0(i_0, n, k)\), since we assume \(||V|| \neq 0\) and we know the boundedness of \(\frac{e_0 + e_1 x + e_2 x^2 + e_3 x^3}{f_0 + f_1 x + f_2 x^2 + f_3 x^3}\) from

\[
\lim_{x \to 0} \frac{e_0 + e_1 x + e_2 x^2 + e_3 x^3}{f_0 + f_1 x + f_2 x^2 + f_3 x^3} = \frac{e_0}{f_0}
\]
and
\[\lim_{x \to \infty} \frac{e_0 + e_1 x + e_2 x^2 + e_3 x^3}{f_0 + f_1 x + f_2 x^2 + f_3 x^3} = \frac{e_3}{f_3} \]
for positive constants \(e_i, f_i\) and \(x \geq 0\).

Consequently, we have
\[
\begin{align*}
d(\phi_h(v_p), \phi_h(w_q)) - d(v_p, w_q) &\leq K(\int_0^1 \|V\| + \|W\| ds) h \\
&\leq KC_0(\int_0^1 \int_0^{t_0/4} |J| dt ds) h \\
&= KC_0 d(v_p, w_q) h,
\end{align*}
\]
which completes the proof. \(\square\)

For fixed \(T\), we have
\[
\begin{align*}
d(\phi_T(v_p), \phi_T(w_q)) &\leq \lim_{h \to 0} (1 + KC_0 h)^{T/h} d(v_p, w_q) \\
&\leq e^{TKC_0} d(v_p, w_q).
\end{align*}
\]

Then by lemma 1, the topological entropy for geodesic flows of compact Riemannian manifolds with \(\text{Ric}_M \geq -k\) and \(\text{inj}_M \geq t_0\) is bounded; i.e. \(h(\phi) \leq (2n-1)KC_0\). This completes the proof of the theorem.

References

[H] J. Heo, Completely multi-positive linear maps and representations of Hilbert \(C^*\)-modules, preprint.

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: shpaeng@math.snu.ac.kr