Generalized numerical ranges, joint positive definiteness and multiple eigenvalues
HTML articles powered by AMS MathViewer
- by Yiu Tung Poon
- Proc. Amer. Math. Soc. 125 (1997), 1625-1634
- DOI: https://doi.org/10.1090/S0002-9939-97-03781-7
- PDF | Request permission
Abstract:
We prove a convexity theorem on a generalized numerical range that combines and generalizes the following results: 1) Friedland and Loewy’s result on the existence of a nonzero matrix with multiple first eigenvalue in subspaces of hermitian matrices, 2) Bohnenblust’s result on joint positive definiteness of hermitian matrices, 3) the Toeplitz-Hausdorff Theorem on the convexity of the classical numerical range and its various generalizations by Au-Yeung, Berger, Brickman, Halmos, Poon, Tsing and Westwick.References
- J. F. Adams, Peter D. Lax, and Ralph S. Phillips, On matrices whose real linear combinations are non-singular, Proc. Amer. Math. Soc. 16 (1965), 318–322. MR 179183, DOI 10.1090/S0002-9939-1965-0179183-6
- Yik-hoi Au-yeung, A simple proof of the convexity of the field of values defined by two Hermitian forms, Aequationes Math. 12 (1975), 82–83. MR 366954, DOI 10.1007/BF01834040
- Yik Hoi Au-Yeung, Some results on generalized numerical ranges and related topics, Current trends in matrix theory (Auburn, Ala., 1986) North-Holland, New York, 1987, pp. 23–28. MR 898888
- Yik Hoi Au-Yeung and Yiu Tung Poon, A remark on the convexity and positive definiteness concerning Hermitian matrices, Southeast Asian Bull. Math. 3 (1979), no. 2, 85–92. MR 564798
- Yik Hoi Au-Yeung and Nam-Kiu Tsing, Some theorems on the generalized numerical ranges, Linear and Multilinear Algebra 15 (1984), no. 1, 3–11. MR 731673, DOI 10.1080/03081088408817574
- Yik Hoi Au-Yeung and Nam-Kiu Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), no. 2, 215–218. MR 712625, DOI 10.1090/S0002-9939-1983-0712625-4
- C. A. Berger, Normal dilations, Ph. D. Thesis, Cornell Univ., 1963.
- F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
- Louis Brickman, On the field of values of a matrix, Proc. Amer. Math. Soc. 12 (1961), 61–66. MR 122827, DOI 10.1090/S0002-9939-1961-0122827-1
- John Doyle, Analysis of feedback systems with structured uncertainties, Proc. IEE-D 129 (1982), no. 6, 242–250. MR 685109, DOI 10.1049/ip-d.1982.0053
- Michael K. H. Fan and André L. Tits, $m$-form numerical range and the computation of the structured singular value, IEEE Trans. Automat. Control 33 (1988), no. 3, 284–289. MR 927847, DOI 10.1109/9.405
- S. Friedland and R. Loewy, Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue, Pacific J. Math. 62 (1976), no. 2, 389–399. MR 414597, DOI 10.2140/pjm.1976.62.389
- P. R. Halmos, Numerical ranges and normal dilations, Acta Sci. Math. (Szeged) 25 (1964), 1–5. MR 171168
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, London, 1934.
- F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314–316.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Chi-Kwong Li, Matrices with some extremal properties, Linear Algebra Appl. 101 (1988), 255–267. MR 941306, DOI 10.1016/0024-3795(88)90153-X
- Albert W. Marshall and Ingram Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, vol. 143, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 552278
- Yiu Tung Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), no. 1, 35–37. MR 586669, DOI 10.1080/03081088008817347
- Yiu Tung Poon, On the convex hull of the multiform numerical range, Linear and Multilinear Algebra 37 (1994), no. 1-3, 221–223. Special Issue: The numerical range and numerical radius. MR 1313770, DOI 10.1080/03081089408818324
- Olga Taussky, Positive-definite matrices, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) Academic Press, New York, 1967, pp. 309–319. MR 0220754
- R. C. Thompson, Singular values, diagonal elements, and convexity, SIAM J. Appl. Math. 32 (1977), no. 1, 39–63. MR 424847, DOI 10.1137/0132003
- O. Toeplitz, Das algebraishe Analogon zu einem Satze von Fejér, Math. Z. 2 (1918), 187–197.
- R. Westwick, A theorem on numerical range, Linear and Multilinear Algebra 2 (1975), 311–315. MR 374936, DOI 10.1080/03081087508817074
Bibliographic Information
- Yiu Tung Poon
- MR Author ID: 141040
- Email: ytpoon@iastate.edu
- Received by editor(s): September 22, 1995
- Received by editor(s) in revised form: January 4, 1996
- Additional Notes: The author wants to thank the referee for some helpful comments and suggestions.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1625-1634
- MSC (1991): Primary 15A60; Secondary 47A12
- DOI: https://doi.org/10.1090/S0002-9939-97-03781-7
- MathSciNet review: 1372044
Dedicated: Dedicated to Professor Yik Hoi Au-Yeung