ISOTOPY AND IDENTITIES IN ALTERNATIVE ALGEBRAS

M. BABIKOV

(Communicated by Lance W. Small)

Abstract. In this paper we show how to construct an isomorphism between an alternative algebra A over a field of characteristic $\neq 3$ and its isotope $A^{(1+c)}$, where c is an element of Zhevlakov’s radical of A. This leads to the equivalence of any polynomial identity $f = 0$ in alternative algebras and the isotope identity $f^{(s)} = 0$.

Given an invertible element s of an alternative algebra A, we can form a new algebra by taking the same linear structure but a new multiplication

$$x \ast_s y = (xs)y.$$

The resulting algebra, denoted $A^{(s)}$, is also alternative (see [1]) and is called an s-isotope. Associative and Cayley isotopes are always isomorphic [2], and an isotope of a finite-dimensional alternative algebra over an algebraically closed field of characteristic $\neq 3$ is isomorphic to the original algebra as well [1]. We consider the case of an arbitrary alternative algebra over a field of characteristic $\neq 3$ with nonzero Zhevlakov radical, and a particular choice of s, and construct an explicit isomorphism between A and $A^{(s)}$. As a consequence, we derive the equivalence of any polynomial identity and its isotope in an arbitrary alternative algebra over a field of characteristic $\neq 3$. The paper has benefited from many discussions with J. Ferrar, and I would like to thank him for his valuable help and encouragement.

Theorem 1. There is a set of coefficients t^i_j, $i, j \geq 0$, such that $t^{0}_0 = 1$ and for any integer m, any alternative algebra A over a field of characteristic $\neq 3$ and any elements a, b, c from A such that $\text{Id}_A(c)^m = 0$, the polynomial $t(x) = \sum_{i,j} t^i_j c^ix^j$ satisfies

$$(1) \quad t(a) \ast_{1+c} t(b) = t(ab).$$

Proof. We will show the way to calculate the coefficients t^i_j such that (1) holds for any alternative algebra A. Clearly,

$$t(a) \ast_{1+c} t(b) = t(a)t(b) + (t(a)c)t(b) = \sum t^i_j t^k_l (c^iac^j)(c^kb^l) + \sum t^i_j t^k_l (c^iac^{j+1})(c^kb^l) = \sum t^k_l (t^i_j + t^i_{j-1})(c^iac^j)(c^kb^l),$$

Received by the editors March 28, 1995.

1991 Mathematics Subject Classification. Primary 17D05.
where \(t_{i-1} = 0 \) and \(0 \leq i, j, k, l \leq m - 1 \). For brevity we shall denote \(t^k_i (t^j_j + t^i_{j-1}) \) simply by \(t^k_{ij} \); then

\[
t(a) *_{1+e} t(b) - t(ab) = \sum t^k_{ij} ((c^i a c^j b + (c^i a, c^j, b c^l)) - \sum t^k_{ij} ((c^i a)(b c^l) - (c^i, a, b)c^l + (c^i a, b, c^l))
\]

(2)

\[
= \sum \sum t^k_{ij} (c^i a c^j b)(b c^l) + \sum t^k_{ij} (c^i a)c^j + \sum t^k_{ij} (a, b, c^l) c^l.
\]

We need (1) to be true for any alternative algebra, in particular for an associative one, for which all the associators in (2) are zeroes and (1) is equivalent to

(3)

\[
\sum \sum t^k_{ij} c^i a c^j b c^l - \sum t^k_{ij} c^i a b c^l = 0.
\]

For the cases \(n = 0 \) and \(n \geq 1 \) we get that

(4)

\[
t^0_{i0} = t^i_i,
\]

(5)

\[
\sum_{j+k=n} t^k_{ij} = 0,
\]

for any \(i \) and \(l \). It is easy to see that (4) yields

(6)

\[
t^i_i = t^i_i = t^0_i.
\]

But then

\[
\sum_{j+k=n} t^k_{ij} = t^i_i \sum_{j+k=n} (t^k_{ij} + t^k_{j-1}),
\]

and therefore (5) yields

(7)

\[
\sum_{j+k=n} t^k_{ij} = - \sum_{j+k=n-1} t^k_{ij}.
\]

Consequently, since \(\sum_{j+k=1} t^k_{ij} = t^0_{i0} = 1 \) and by induction on \(n \),

(7)

\[
\sum_{j+k=n} t^k_{ij} = (-1)^n.
\]

Now we assume (6) and (7), which implies (3). Going back to the alternative case we note that (4) and (5) also imply

\[
\sum \sum t^k_{ij} (c^i a c^j b)(b c^l) - \sum t^k_{ij} (c^i a)(b c^l) = 0.
\]

So in the expression (2) only sums with the associators are left. It is easy to see that in any alternative algebra the Moufang identities imply

\[
(a, b, c^{k+l}) = -(a, c^l, c^b b) + b(a, c^l, c^k) + c^l(a, b, c^k) = (a, b, c^l) c^k + c^l(a, b, c^k).
\]
Using this identity we get

\[t(a) * t(b) - t(ab) = \sum t_{ij}^k (-a(b,c^{i+j})c^{k+i} + (a,b,c^{i+j+k})c^j) \]

\[- \sum t_{ij}^l (a,b,c^j)c^i + \sum t_{ij}^l (a,b,c^i)c^j \]

\[= \sum T_{pq}(a,b,c^p)c^q, \]

where

\[T_{pq} = t_q^p - t_p^q - \sum_{l+j=p, k+i=q} t_{ij}^{kl} + \sum_{l+j+k=p, i=q} t_{ij}^{kl}. \]

Let us simplify this expression for \(T_{pq} \). Clearly by (7)

\[\sum_{l+j+k=p} t_{ij}^{kl} = \sum_{k+l=p-j} t_{ij}^k \sum_{j} t_{0j}^q = \sum_{j} (-1)^{p-j} t_{0j}^q \]

\[= \sum_{j} (-1)^{p-j} (t_j^q + t_{j-1}^q) = t_p^q, \]

and so

\[T_{pq} = t_q^p - \sum_{l+j=p, k+i=q} t_{ij}^{kl}. \]

Now we use induction on \(d = p + q \) to prove the existence of \(t_d^0 \) and \(t_d^0 \) such that \(T_{pq} = 0 \) for any \(p + q \leq d \). Note that although we do it for any \(p \) and \(q \), we need \(T_{pq} = 0 \) only for \(p \neq 0 \), because otherwise in (8) we have \((a,b,c^p)c^q = 0 \). First, we consider the case \(q = 0 \) and find \(t_d^0 \):

\[t_d^0 + t_d^0 = \sum_{l+j=d} t_j^l - \sum_{l+j=d, i \neq d, j \neq d} t_j^i \]

\[= (-1)^d - \sum_{l+j=d, i \neq d, j \neq d} t_j^i. \]

So, since \(T_{pq} = 0 \),

\[t_d^0 = \sum_{l+j=d} t_j^0 (t_j^0 + t_{j-1}^0) = \sum_{l+j=d, l \neq d, j \neq d} t_j^0 (t_j^0 + t_{j-1}^0) + t_{d-1}^0 + 2t_d^0 \]

\[= \sum_{l+j=d, l \neq d, j \neq d} t_j^0 (t_j^0 + t_{d-1}^0) + 2 (-1)^d - \sum_{i+j=d, i \neq d, j \neq d} t_j^i t_j^0 - t_0^d, \]

and we get

\[t_d^0 = \frac{1}{3} \left(\sum_{l+j=d, l \neq d, j \neq d} t_j^0 + t_{d-1}^0 + 2 (-1)^d - \sum_{i+j=d, i \neq d, j \neq d} t_j^i t_j^0 \right). \]

To complete the proof we must show that \(T_{qp} = 0 \) for any \(p, q \) such that \(p + q = d \) based on the assumption that this is true for \(p + q \leq d - 1 \). If \(p \neq 0 \) and \(q \neq 0 \), then

\[T_{pq} = t_q^p - \sum_{k+i=q} t_{0k}^{ji} \sum_{l+j=p} t_{ij}^0 = t_q^p - t_0^p t_q^0 = 0. \]
The case \(q = 0 \) follows from (9) and for \(p = 0 \) we have
\[
T_{0d} = r_d^0 - \sum_{k+i=d} t_{0i}^k = t_d^0 - \sum_{k+i=d} \left(\sum_{l+j=k} t_{lj}^0 \right) t_i^j
\]
\[
= r_d^0 - \sum_{j \leq d} t_{0j}^0 \sum_{i+l=d-j} t_i^j = t_d^0 - \sum_{j \leq d} (t_{j}^0 + t_{j-1}^0)(-1)^{d-j}
\]
\[
= r_d^0 - \left(\sum_{j \leq d} t_{j}^0 (-1)^{d-j} - \sum_{j < d} (t_{j}^0)(-1)^{d-j} \right) = 0.
\]
This proves the theorem.

\[\square\]

Corollary 1. Let \(A, c \) and \(t(x) \) be the same as in the Theorem 1; then the mapping \(t : x \to t(x) \) is an isomorphism of \(A \) onto \(A^{(1+c)} \).

Proof. Theorem 1 states that \(t \) is a homomorphism. To prove that \(t \) is surjective, we have to find a polynomial \(T = t^{-1} \) such that \(t(T(a)) = a \). Let us use induction on \(m = \deg(c) \). For \(m = 1 \) the statement is obvious: \(T = 1 \). Assume that \(T_1 \) is the required polynomial for the case of \(\deg(c) = m - 1 \); then for \(\deg(c) = m \) we have \(t(T_1(a)) = a + R(a) \), where \(R \) is a homogeneous polynomial linear in \(a \) and of degree \(m - 1 \) in \(c \). We set
\[
T(a) = T_1(a) - T_1(R(a)).
\]
Then \(R(R(a)) = 0 \), since \(R(R(a)) \) is of degree \(2(m - 1) \geq m \) in \(c \), and we have
\[
t(T(a)) = a + R(a) - R(a) - R(R(a)) = a - R(R(a)) = a.
\]
This completes the proof.

\[\square\]

Let \(x_1, \ldots, x_k \) be some generators of a free alternative algebra \(A_0 \), and \(f \) a polynomial in \(x_1, \ldots, x_k \). Since \(A_0 \) is free, for any \(s \in A_0 \) there is a homomorphism \(\phi_s : A_0 \to A_0^{(s)} \) such that \(x_i \mapsto x_i \). We denote the image of \(f \) by \(f^{(s)} \).

Theorem 2. Any alternative algebra \(A \) over a field of characteristics \(\neq 3 \) with a polynomial identity \(f = 0 \) satisfies also \(f^{(s)} = 0 \) for any \(s \in A \).

Proof. The variety of alternative algebras is homogeneous ([3], page 8); therefore we need to consider only the case of homogeneous polynomial \(f \). Let \(A_0 \) be a free alternative algebra on \(k+1 \) generators \(x_1, \ldots, x_k, c \). By Theorem 1 and the corollary,
\[
f^{(1+c)}(x_1, \ldots, x_k) = t(f(t^{-1}x_1, \ldots, t^{-1}x_k)) + c_m,
\]
where \(c_m \in \text{Id}(c)^m \) and \(m = \deg(f) \). Consider the homogeneous component of degree \(m - 1 \) in \(c \):
\[
f^{(c)}(x_1, \ldots, x_k) = \Delta_c^{m-1}t(f(t^{-1}x_1, \ldots, t^{-1}x_k)) \in \text{Id}(f).
\]
Here \(\Delta_c^{m-1} \) is the linearization operator (see [3]), and \(\text{Id}(f) \) denotes the ideal generated by all values of \(f \). Since \(A_0 \) is free and \(x_1, \ldots, x_k, c \) are its generators, (10) holds for any algebra \(A \) and for any elements \(x_1, \ldots, x_k, c \) in \(A \). This proves the theorem.

\[\square\]
For algebras over a field of characteristics 3 Theorem 2 is false. Consider a commutative but not associative alternative algebra; it satisfies \([x, y] = 0\). On the other hand,

\[
[x, y]^{(c)} = (xc)y - (yc)x = (x, c, y).
\]

So, generally speaking, \([x, y]^{(c)} \neq 0\).

References

Department of Mathematics, Ohio State University, Columbus, Ohio 43202

E-mail address: brkvch@math.ohio-state.edu