Local fundamental groups of algebraic varieties
HTML articles powered by AMS MathViewer
- by Shreeram S. Abhyankar
- Proc. Amer. Math. Soc. 125 (1997), 1635-1641
- DOI: https://doi.org/10.1090/S0002-9939-97-03938-5
- PDF | Request permission
Abstract:
Some progress is made in the calculation of local fundamental groups.References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Shreeram Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825–856. MR 94354, DOI 10.2307/2372438
- Shreeram Abhyankar, On the ramification of algebraic functions. II. Unaffected equations for characteristic two, Trans. Amer. Math. Soc. 89 (1958), 310–324. MR 98749, DOI 10.1090/S0002-9947-1958-0098749-6
- Shreeram Abhyankar, Tame coverings and fundamental groups of algebraic varieties. VI. Plane curves of order at most four, Amer. J. Math. 82 (1960), 374–388. MR 110710, DOI 10.2307/2372742
- Shreeram S. Abhyankar, Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 111–152. MR 0200272
- Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966. MR 0217069
- Shreeram S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 68–133. MR 1118002, DOI 10.1090/S0273-0979-1992-00270-7
- Shreeram S. Abhyankar, Nice equations for nice groups, Israel J. Math. 88 (1994), no. 1-3, 1–23. MR 1303488, DOI 10.1007/BF02937504
- S. S. Abhyankar, Mathieu group coverings and linear group coverings, Contemporary Mathematics 186 (1995), 293-319.
- S. S. Abhyankar, Projective polynomials (To Appear).
- R. Dedekind and H. Weber, Theorie der alg. Funktionen einer veränderlichen, Crelle Journal 92 (1882), 181-290.
- David Harbater, Abhyankar’s conjecture on Galois groups over curves, Invent. Math. 117 (1994), no. 1, 1–25. MR 1269423, DOI 10.1007/BF01232232
- H. W. E. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier Veränderlichen $x,y$ in der Umgebung einer Stelle $x=a,y=b$, Crelle Journal 133 (1908), 289-314.
- Masayoshi Nagata, On the purity of branch loci in regular local rings, Illinois J. Math. 3 (1959), 328–333. MR 106930
- M. Noether, Über die alg. Functionen einer und zweier Variabeln, Göttinger Nachrichten (1871).
- M. Raynaud, Revêtements de la droite affine en caractéristique $p>0$ et conjecture d’Abhyankar, Invent. Math. 116 (1994), no. 1-3, 425–462 (French). MR 1253200, DOI 10.1007/BF01231568
- B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen (1851), 1-48.
- K. F. Stevenson, Galois groups of unramified covers of projective curves in characteristic $p$, Journal of Algebra 44, (To Appear).
- Oscar Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 791–796. MR 95846, DOI 10.1073/pnas.44.8.791
Bibliographic Information
- Shreeram S. Abhyankar
- Email: ram@cs.purdue.edu
- Received by editor(s): January 5, 1996
- Additional Notes: This work was partly supported by NSF grant DMS 91–01424 and NSA grant MDA 904–92–H–3035.
- Communicated by: Ronald M. Solomon
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1635-1641
- MSC (1991): Primary 12F10, 14H30, 20D06, 20E22
- DOI: https://doi.org/10.1090/S0002-9939-97-03938-5
- MathSciNet review: 1403110
Dedicated: Dedicated to Walter Feit for his Sixty-Fifth Birthday