Extension and convergence theorems for families of normal maps in several complex variables
HTML articles powered by AMS MathViewer
- by James E. Joseph and Myung H. Kwack
- Proc. Amer. Math. Soc. 125 (1997), 1675-1684
- DOI: https://doi.org/10.1090/S0002-9939-97-04117-8
- PDF | Request permission
Abstract:
Let $\mathcal {H}(X,Y) ( \mathcal {C}(X,Y) )$ represent the family of holomorphic (continuous) maps from a complex (topological) space $X$ to a complex (topological) space $Y$, and let $Y^{+} = Y \cup \{\infty \}$ be the Alexandroff one–point compactification of $Y$ if $Y$ is not compact, $Y^{+}=Y$ if $Y$ is compact. We say that $\mathcal {F} \subset \mathcal {H}(X,Y)$ is uniformly normal if $\{f \circ \varphi : f \in \mathcal {F}$, $\varphi \in \mathcal {H}(M,X)\}$ is relatively compact in $\mathcal {C}(M,Y^{+})$ (with the compact–open topology) for each complex manifold $M$. We show that normal maps as defined and studied by authors in various settings are, as singleton sets, uniformly normal families, and prove extension and convergence theorems for uniformly normal families. These theorems include (1) extension theorems of big Picard type for such families – defined on complex manifolds having divisors with normal crossings – which encompass results of Järvi, Kiernan, Kobayashi, and Kwack as special cases, and (2) generalizations to such families of an extension–convergence theorem due to Noguchi.References
- Marco Abate, A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117 (1993), no. 3, 789–793. MR 1128723, DOI 10.1090/S0002-9939-1993-1128723-6
- L. A. Campbell, A. Howard, and T. Ochiai, Moving holomorphic disks off analytic subsets, Proc. Amer. Math. Soc. 60 (1976), 106–108 (1977). MR 425186, DOI 10.1090/S0002-9939-1976-0425186-0
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901, DOI 10.1007/978-1-4612-6313-5
- Ken-ichi Funahashi, Normal holomorphic mappings and classical theorems of function theory, Nagoya Math. J. 94 (1984), 89–104. MR 748094, DOI 10.1017/S0027763000020857
- Hans Grauert and Helmut Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108–125 (German). MR 194617, DOI 10.1007/BF01111588
- Kyong T. Hahn, Nontangential limit theorems for normal mappings, Pacific J. Math. 135 (1988), no. 1, 57–64. MR 965684, DOI 10.2140/pjm.1988.135.57
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Pentti Järvi, An extension theorem for normal functions, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1171–1174. MR 955002, DOI 10.1090/S0002-9939-1988-0955002-8
- Li Xin Wang and Jin Hao Zhang, Zygmund-Calderón inequality in $\textbf {C}^n$, Chinese J. Contemp. Math. 15 (1994), no. 1, 31–36. MR 1287960
- —, Some classical theorems and families of normal maps in several complex variables, Complex Variables 29 (1996), 343–362.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Peter Kiernan, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann. 204 (1973), 203–209. MR 372260, DOI 10.1007/BF01351589
- Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347–355. MR 318519, DOI 10.1090/S0002-9947-1972-0318519-8
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- —, Relative intrinsic distance and hyperbolic imbedding, Symposia Mathematica, Proceedings of “Recent Advances in Differential Geometry", Pisa, 1993, 36 (to appear).
- Steven G. Krantz, Geometric analysis and function spaces, CBMS Regional Conference Series in Mathematics, vol. 81, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1228447, DOI 10.1090/cbms/081
- Myung H. Kwack, Generalization of the big Picard theorem, Ann. of Math. (2) 90 (1969), 9–22. MR 243121, DOI 10.2307/1970678
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65.
- Junjiro Noguchi, Hyperbolic fibre spaces and Mordell’s conjecture over function fields, Publ. Res. Inst. Math. Sci. 21 (1985), no. 1, 27–46. MR 780890, DOI 10.2977/prims/1195179839
- Junjiro Noguchi, Moduli spaces of holomorphic mappings into hyperbolically imbedded complex spaces and locally symmetric spaces, Invent. Math. 93 (1988), no. 1, 15–34. MR 943922, DOI 10.1007/BF01393686
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- M. G. Zaĭdenberg, Picard’s theorems and hyperbolicity, Sibirsk. Mat. Zh. 24 (1983), no. 6, 44–55 (Russian). MR 731042
- M. G. Zaĭdenberg, Schottky-Landau growth estimates for $s$-normal families of holomorphic mappings, Math. Ann. 293 (1992), no. 1, 123–141. MR 1162678, DOI 10.1007/BF01444708
Bibliographic Information
- James E. Joseph
- Affiliation: Department of Mathematics, Howard University, Washington, D. C. 20059
- Email: jjoseph@scs.howard.edu
- Myung H. Kwack
- Affiliation: Department of Mathematics, Howard University, Washington, D. C. 20059
- Received by editor(s): June 8, 1995
- Communicated by: Eric Bedford
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1675-1684
- MSC (1991): Primary 32A10, 32C10, 32H20, 32A17; Secondary 54C20, 54C35, 54D35, 54C05
- DOI: https://doi.org/10.1090/S0002-9939-97-04117-8
- MathSciNet review: 1423310
Dedicated: Dedicated to Professor Shoshichi Kobayashi at his retirement