Sharp estimates for the Bochner-Riesz operator of negative order in $\mathbf {R}^2$
HTML articles powered by AMS MathViewer
- by Jong-Guk Bak
- Proc. Amer. Math. Soc. 125 (1997), 1977-1986
- DOI: https://doi.org/10.1090/S0002-9939-97-03723-4
- PDF | Request permission
Abstract:
The Bochner-Riesz operator $T^{\alpha }$ on $\mathbf {R}^{n}$ of order $\alpha$ is defined by \begin{equation*}(T^{\alpha } f)\;\widehat {}\;(\xi ) = {\frac {(1-|\xi |^{2})_{+}^{\alpha } }{\Gamma (\alpha +1)}} \hat {f}(\xi ) \end{equation*} where $\;\widehat {}\;$ denotes the Fourier transform and $r_{+}^{\alpha } = r^{\alpha }$ if $r>0$, and $r_{+}^{\alpha }=0$ if $r\leq 0$. We determine all pairs $(p,q)$ such that $T^{\alpha }$ on $\mathbf {R}^{2}$ of negative order is bounded from $L^{p}(\mathbf {R}^{2})$ to $L^{q}(\mathbf {R}^{2})$. To be more precise, we prove that for $0<\delta < 3/2$ the estimate $\Vert T^{-\delta }f \Vert _{L^{q}(\mathbf {R}^{2})} \leq C \Vert f \Vert _{L^{p}(\mathbf {R}^{2})}$ holds if and only if $(1/p,1/q) \in \Delta ^{-\delta }$, where \begin{equation*}\Delta ^{-\delta }=\bigg \{ \bigg ({\frac {1}{p}},{\frac {1}{q}} \bigg )\in [0,1]\times [0,1]\colon \;\; {\frac {1}{p}}-{\frac {1}{q}} \geq {\frac {2\delta }{3}}, \;\; {\frac {1}{p}}> {\frac {1}{4}} + {\frac {\delta }{2}} , \;\; {\frac {1}{q}} < {\frac {3}{4}} - {\frac {\delta }{2}} \bigg \} .\end{equation*} We also obtain some weak-type results for $T^{\alpha }$.References
- J.-G. Bak, Sharp convolution estimates for measures on flat surfaces, J. Math. Anal. Appl. 193 (1995), 756–771.
- J.-G. Bak, D. McMichael, and D. Oberlin, $L^p$-$L^q$ estimates off the line of duality, J. Austral. Math. Soc. Ser. A 58 (1995), no. 2, 154–166. MR 1323988
- C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1–67.
- Lennart Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J. 35 (1986), no. 2, 225–233. MR 833391, DOI 10.1512/iumj.1986.35.35013
- Anthony Carbery and Fernando Soria, Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L^2$-localisation principle, Rev. Mat. Iberoamericana 4 (1988), no. 2, 319–337. MR 1028744, DOI 10.4171/RMI/76
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Lars Hörmander, Oscillatory integrals and multipliers on $FL^{p}$, Ark. Mat. 11 (1973), 1–11. MR 340924, DOI 10.1007/BF02388505
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- A. Seeger, Endpoint inequalities for Bochner-Riesz multipliers in the plane, Pacific J. Math. 174 (1996), 543–553.
- Christopher D. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43–65. MR 835795, DOI 10.1215/S0012-7094-86-05303-2
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- E. M. Stein and G. Weiss, An introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, New Jersey, 1971.
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
Bibliographic Information
- Jong-Guk Bak
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306–3027
- Address at time of publication: Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea
- Email: bak@euclid.postech.ac.kr
- Received by editor(s): October 3, 1995
- Received by editor(s) in revised form: December 19, 1995
- Additional Notes: The author’s research was partially supported by a grant from the Pohang University of Science and Technology
- Communicated by: Christopher D. Sogge
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1977-1986
- MSC (1991): Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-97-03723-4
- MathSciNet review: 1371114